Name | dataquality-rules JSON |
Version |
0.1.0
JSON |
| download |
home_page | None |
Summary | This library is used for Data Quality |
upload_time | 2024-12-18 15:24:30 |
maintainer | None |
docs_url | None |
author | Abhishek Kumar |
requires_python | >=3.6 |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# Data Quality
This project provides a Data Quality Rule (DQR) enabler class for validating and reporting data quality metrics using Apache Spark and Jinja2. It allows users to perform various checks on a DataFrame, such as checking for null values, duplicates, uniqueness, range constraints, and values within a specific list. The results can be saved as an HTML report for easy review and sharing.
# Features
* Schema Validation : Compare the DataFrame's schema with an expected schema.
* Null Value Check : Identify the percentage of null values in specified columns.
* Duplicate Check : Find duplicate rows based on one or more columns.
* Uniqueness Check : Measure the uniqueness of values in specified columns.
* Range Check : Ensure column values fall within a defined range.
* Value Set Check : Verify if column values exist within a predefined list.
* HTML Report Generation : Automatically generate an HTML report summarizing all checks with visual tables.
# Installation
You can install the library using pip:
```bash
pip install dataquality_rules
```
Raw data
{
"_id": null,
"home_page": null,
"name": "dataquality-rules",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": null,
"author": "Abhishek Kumar",
"author_email": "officialabhishek1997@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/76/38/0dff8229f40a937850d7769847c1f8eef7f23e88c71d049f670a331c9fdc/dataquality_rules-0.1.0.tar.gz",
"platform": null,
"description": "# Data Quality\n\nThis project provides a Data Quality Rule (DQR) enabler class for validating and reporting data quality metrics using Apache Spark and Jinja2. It allows users to perform various checks on a DataFrame, such as checking for null values, duplicates, uniqueness, range constraints, and values within a specific list. The results can be saved as an HTML report for easy review and sharing.\n\n# Features\n\n* Schema Validation : Compare the DataFrame's schema with an expected schema.\n* Null Value Check : Identify the percentage of null values in specified columns.\n* Duplicate Check : Find duplicate rows based on one or more columns.\n* Uniqueness Check : Measure the uniqueness of values in specified columns.\n* Range Check : Ensure column values fall within a defined range.\n* Value Set Check : Verify if column values exist within a predefined list.\n* HTML Report Generation : Automatically generate an HTML report summarizing all checks with visual tables.\n\n# Installation\n\nYou can install the library using pip:\n\n```bash\npip install dataquality_rules\n```\n\n",
"bugtrack_url": null,
"license": null,
"summary": "This library is used for Data Quality",
"version": "0.1.0",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "5a9d639fa46b86cb5b5d96a195aecac21af2ac54aab94f6538ee457cf44d5101",
"md5": "0d697f493d09fe9d0369bb5b229ef954",
"sha256": "77f40650fd95809423146ae92c01d37e2699c0608830a10fc4d03578ad32953e"
},
"downloads": -1,
"filename": "dataquality_rules-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "0d697f493d09fe9d0369bb5b229ef954",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 4706,
"upload_time": "2024-12-18T15:24:29",
"upload_time_iso_8601": "2024-12-18T15:24:29.165931Z",
"url": "https://files.pythonhosted.org/packages/5a/9d/639fa46b86cb5b5d96a195aecac21af2ac54aab94f6538ee457cf44d5101/dataquality_rules-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "76380dff8229f40a937850d7769847c1f8eef7f23e88c71d049f670a331c9fdc",
"md5": "f26e7da8805cda79819c16efec580fb5",
"sha256": "115554cf26bfe4f5e77de544448518903cf9e1feec0657a30b23001a5c77c217"
},
"downloads": -1,
"filename": "dataquality_rules-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "f26e7da8805cda79819c16efec580fb5",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 4310,
"upload_time": "2024-12-18T15:24:30",
"upload_time_iso_8601": "2024-12-18T15:24:30.538977Z",
"url": "https://files.pythonhosted.org/packages/76/38/0dff8229f40a937850d7769847c1f8eef7f23e88c71d049f670a331c9fdc/dataquality_rules-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-18 15:24:30",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "dataquality-rules"
}