DataQueryFrame
===============
.. image:: https://img.shields.io/pypi/v/dataqueryframe.svg
:target: https://pypi.python.org/pypi/dataqueryframe
.. image:: https://readthedocs.org/projects/dataqueryframe/badge/?version=latest
:target: https://dataqueryframe.readthedocs.io/en/latest/?version=latest
.. image:: https://pyup.io/repos/github/jmccoll7/dataqueryframe/shield.svg
:target: https://pyup.io/repos/github/jmccoll7/dataqueryframe/
DataQueryFrame is an enhanced DataFrame library that provides SQL-like capabilities for data manipulation and analysis. It extends the functionality of the popular pandas DataFrame, allowing you to perform common database operations directly on your data.
Features
--------
- SQL-like query operations: SELECT, WHERE, GROUP BY, ORDER BY, UNION, etc.
- Seamless integration with pandas DataFrame
- Easy-to-use API for data filtering, aggregation, and transformation
- Support for various data sources (CSV, Excel, SQL databases, etc.)
- Efficient and optimized for large datasets
Installation
------------
You can install DataQueryFrame using pip:
::
pip install dataqueryframe
Usage
-----
Here's a quick example of how to use DataQueryFrame:
.. code-block:: python
import pandas as pd
from dataqueryframe.dataqueryframe import DataQueryFrame as dqf
# Create a DataQueryFrame from a parquet file
# df = dqf(pd.read_parquet('data.parquet'))
# Create a DataQueryFrame from a dictionary
df = dqf({'A': [1,2,3,4,5], 'B': ['good', 'bad', 'ugly', 'good', 'bad']})
# Perform SQL-like operations
result = df.select(['column1', 'column2']) \
.where('column1', '<', 3) \
.order_by('column1', ascending=False) \
.limit(10)
print(result)
=======
History
=======
0.1.0 (2024-03-28)
------------------
* First release on PyPI.
Raw data
{
"_id": null,
"home_page": "https://github.com/jmccoll7/dataqueryframe",
"name": "dataqueryframe",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": "dataqueryframe",
"author": "James McColl",
"author_email": "jmccoll71@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/79/54/10d48968d4d7a58b784259be38111dced1a5f3326128973c10a69d3e76ec/dataqueryframe-0.1.0.tar.gz",
"platform": null,
"description": "DataQueryFrame\n===============\n\n.. image:: https://img.shields.io/pypi/v/dataqueryframe.svg\n :target: https://pypi.python.org/pypi/dataqueryframe\n\n.. image:: https://readthedocs.org/projects/dataqueryframe/badge/?version=latest\n :target: https://dataqueryframe.readthedocs.io/en/latest/?version=latest\n\n.. image:: https://pyup.io/repos/github/jmccoll7/dataqueryframe/shield.svg\n :target: https://pyup.io/repos/github/jmccoll7/dataqueryframe/\n\nDataQueryFrame is an enhanced DataFrame library that provides SQL-like capabilities for data manipulation and analysis. It extends the functionality of the popular pandas DataFrame, allowing you to perform common database operations directly on your data.\n\nFeatures\n--------\n\n- SQL-like query operations: SELECT, WHERE, GROUP BY, ORDER BY, UNION, etc.\n- Seamless integration with pandas DataFrame\n- Easy-to-use API for data filtering, aggregation, and transformation\n- Support for various data sources (CSV, Excel, SQL databases, etc.)\n- Efficient and optimized for large datasets\n\nInstallation\n------------\n\nYou can install DataQueryFrame using pip:\n\n::\n\n pip install dataqueryframe\n\nUsage\n-----\n\nHere's a quick example of how to use DataQueryFrame:\n\n.. code-block:: python\n\n import pandas as pd\n from dataqueryframe.dataqueryframe import DataQueryFrame as dqf\n\n # Create a DataQueryFrame from a parquet file\n # df = dqf(pd.read_parquet('data.parquet'))\n\n # Create a DataQueryFrame from a dictionary\n df = dqf({'A': [1,2,3,4,5], 'B': ['good', 'bad', 'ugly', 'good', 'bad']})\n\n # Perform SQL-like operations\n result = df.select(['column1', 'column2']) \\\n .where('column1', '<', 3) \\\n .order_by('column1', ascending=False) \\\n .limit(10)\n print(result)\n\n\n=======\nHistory\n=======\n\n0.1.0 (2024-03-28)\n------------------\n\n* First release on PyPI.\n",
"bugtrack_url": null,
"license": "MIT license",
"summary": "An enhanced DataFrame with SQL-like capabilities.",
"version": "0.1.0",
"project_urls": {
"Homepage": "https://github.com/jmccoll7/dataqueryframe"
},
"split_keywords": [
"dataqueryframe"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "5f1e198a18db7528a5d6f600bbcb45eb98fb4d7e9ebec3d6211d26c99bb7fa5a",
"md5": "f82e6f2fabf4afad6408f0649a599ff9",
"sha256": "e0251e43b8b565515326411db29b32c6faa6ec084109e02949d3fddc112e39d6"
},
"downloads": -1,
"filename": "dataqueryframe-0.1.0-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "f82e6f2fabf4afad6408f0649a599ff9",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": ">=3.6",
"size": 6055,
"upload_time": "2024-03-28T23:36:57",
"upload_time_iso_8601": "2024-03-28T23:36:57.640207Z",
"url": "https://files.pythonhosted.org/packages/5f/1e/198a18db7528a5d6f600bbcb45eb98fb4d7e9ebec3d6211d26c99bb7fa5a/dataqueryframe-0.1.0-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "795410d48968d4d7a58b784259be38111dced1a5f3326128973c10a69d3e76ec",
"md5": "293f940fe26456c103567d03dafdd511",
"sha256": "d64fb4877d2c893ed5be06350baf5496446297ad85de8fc42212d35aea96a5cf"
},
"downloads": -1,
"filename": "dataqueryframe-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "293f940fe26456c103567d03dafdd511",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 12128,
"upload_time": "2024-03-28T23:36:59",
"upload_time_iso_8601": "2024-03-28T23:36:59.548438Z",
"url": "https://files.pythonhosted.org/packages/79/54/10d48968d4d7a58b784259be38111dced1a5f3326128973c10a69d3e76ec/dataqueryframe-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-03-28 23:36:59",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "jmccoll7",
"github_project": "dataqueryframe",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [],
"tox": true,
"lcname": "dataqueryframe"
}