dataqueryframe


Namedataqueryframe JSON
Version 0.1.0 PyPI version JSON
download
home_pagehttps://github.com/jmccoll7/dataqueryframe
SummaryAn enhanced DataFrame with SQL-like capabilities.
upload_time2024-03-28 23:36:59
maintainerNone
docs_urlNone
authorJames McColl
requires_python>=3.6
licenseMIT license
keywords dataqueryframe
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            DataQueryFrame
===============

.. image:: https://img.shields.io/pypi/v/dataqueryframe.svg
    :target: https://pypi.python.org/pypi/dataqueryframe

.. image:: https://readthedocs.org/projects/dataqueryframe/badge/?version=latest
    :target: https://dataqueryframe.readthedocs.io/en/latest/?version=latest

.. image:: https://pyup.io/repos/github/jmccoll7/dataqueryframe/shield.svg
    :target: https://pyup.io/repos/github/jmccoll7/dataqueryframe/

DataQueryFrame is an enhanced DataFrame library that provides SQL-like capabilities for data manipulation and analysis. It extends the functionality of the popular pandas DataFrame, allowing you to perform common database operations directly on your data.

Features
--------

- SQL-like query operations: SELECT, WHERE, GROUP BY, ORDER BY, UNION, etc.
- Seamless integration with pandas DataFrame
- Easy-to-use API for data filtering, aggregation, and transformation
- Support for various data sources (CSV, Excel, SQL databases, etc.)
- Efficient and optimized for large datasets

Installation
------------

You can install DataQueryFrame using pip:

::

    pip install dataqueryframe

Usage
-----

Here's a quick example of how to use DataQueryFrame:

.. code-block:: python

    import pandas as pd
    from dataqueryframe.dataqueryframe import DataQueryFrame as dqf

    # Create a DataQueryFrame from a parquet file
    # df = dqf(pd.read_parquet('data.parquet'))

    # Create a DataQueryFrame from a dictionary
    df = dqf({'A': [1,2,3,4,5], 'B': ['good', 'bad', 'ugly', 'good', 'bad']})

    # Perform SQL-like operations
    result = df.select(['column1', 'column2']) \
               .where('column1', '<', 3) \
               .order_by('column1', ascending=False) \
               .limit(10)
    print(result)


=======
History
=======

0.1.0 (2024-03-28)
------------------

* First release on PyPI.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/jmccoll7/dataqueryframe",
    "name": "dataqueryframe",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "dataqueryframe",
    "author": "James McColl",
    "author_email": "jmccoll71@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/79/54/10d48968d4d7a58b784259be38111dced1a5f3326128973c10a69d3e76ec/dataqueryframe-0.1.0.tar.gz",
    "platform": null,
    "description": "DataQueryFrame\n===============\n\n.. image:: https://img.shields.io/pypi/v/dataqueryframe.svg\n    :target: https://pypi.python.org/pypi/dataqueryframe\n\n.. image:: https://readthedocs.org/projects/dataqueryframe/badge/?version=latest\n    :target: https://dataqueryframe.readthedocs.io/en/latest/?version=latest\n\n.. image:: https://pyup.io/repos/github/jmccoll7/dataqueryframe/shield.svg\n    :target: https://pyup.io/repos/github/jmccoll7/dataqueryframe/\n\nDataQueryFrame is an enhanced DataFrame library that provides SQL-like capabilities for data manipulation and analysis. It extends the functionality of the popular pandas DataFrame, allowing you to perform common database operations directly on your data.\n\nFeatures\n--------\n\n- SQL-like query operations: SELECT, WHERE, GROUP BY, ORDER BY, UNION, etc.\n- Seamless integration with pandas DataFrame\n- Easy-to-use API for data filtering, aggregation, and transformation\n- Support for various data sources (CSV, Excel, SQL databases, etc.)\n- Efficient and optimized for large datasets\n\nInstallation\n------------\n\nYou can install DataQueryFrame using pip:\n\n::\n\n    pip install dataqueryframe\n\nUsage\n-----\n\nHere's a quick example of how to use DataQueryFrame:\n\n.. code-block:: python\n\n    import pandas as pd\n    from dataqueryframe.dataqueryframe import DataQueryFrame as dqf\n\n    # Create a DataQueryFrame from a parquet file\n    # df = dqf(pd.read_parquet('data.parquet'))\n\n    # Create a DataQueryFrame from a dictionary\n    df = dqf({'A': [1,2,3,4,5], 'B': ['good', 'bad', 'ugly', 'good', 'bad']})\n\n    # Perform SQL-like operations\n    result = df.select(['column1', 'column2']) \\\n               .where('column1', '<', 3) \\\n               .order_by('column1', ascending=False) \\\n               .limit(10)\n    print(result)\n\n\n=======\nHistory\n=======\n\n0.1.0 (2024-03-28)\n------------------\n\n* First release on PyPI.\n",
    "bugtrack_url": null,
    "license": "MIT license",
    "summary": "An enhanced DataFrame with SQL-like capabilities.",
    "version": "0.1.0",
    "project_urls": {
        "Homepage": "https://github.com/jmccoll7/dataqueryframe"
    },
    "split_keywords": [
        "dataqueryframe"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5f1e198a18db7528a5d6f600bbcb45eb98fb4d7e9ebec3d6211d26c99bb7fa5a",
                "md5": "f82e6f2fabf4afad6408f0649a599ff9",
                "sha256": "e0251e43b8b565515326411db29b32c6faa6ec084109e02949d3fddc112e39d6"
            },
            "downloads": -1,
            "filename": "dataqueryframe-0.1.0-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "f82e6f2fabf4afad6408f0649a599ff9",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": ">=3.6",
            "size": 6055,
            "upload_time": "2024-03-28T23:36:57",
            "upload_time_iso_8601": "2024-03-28T23:36:57.640207Z",
            "url": "https://files.pythonhosted.org/packages/5f/1e/198a18db7528a5d6f600bbcb45eb98fb4d7e9ebec3d6211d26c99bb7fa5a/dataqueryframe-0.1.0-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "795410d48968d4d7a58b784259be38111dced1a5f3326128973c10a69d3e76ec",
                "md5": "293f940fe26456c103567d03dafdd511",
                "sha256": "d64fb4877d2c893ed5be06350baf5496446297ad85de8fc42212d35aea96a5cf"
            },
            "downloads": -1,
            "filename": "dataqueryframe-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "293f940fe26456c103567d03dafdd511",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 12128,
            "upload_time": "2024-03-28T23:36:59",
            "upload_time_iso_8601": "2024-03-28T23:36:59.548438Z",
            "url": "https://files.pythonhosted.org/packages/79/54/10d48968d4d7a58b784259be38111dced1a5f3326128973c10a69d3e76ec/dataqueryframe-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-28 23:36:59",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "jmccoll7",
    "github_project": "dataqueryframe",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "tox": true,
    "lcname": "dataqueryframe"
}
        
Elapsed time: 0.64575s