dataramp


Namedataramp JSON
Version 0.3.5 PyPI version JSON
download
home_pagehttps://github.com/Kimxons/dataramp
SummaryA Data science library for data science / data analysis teams
upload_time2025-02-18 19:17:13
maintainerNone
docs_urlNone
authorMeshack Kitonga
requires_python>=3.7
licenseNone
keywords data science machine learning data analysis
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Dataramp

[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![Pylint](https://img.shields.io/badge/pylint-enabled-brightgreen.svg)](https://github.com/PyCQA/pylint)
[![Flake8](https://img.shields.io/badge/flake8-enabled-blue.svg)](https://flake8.pycqa.org/en/latest/)
[![Scikit-learn](https://img.shields.io/badge/scikit--learn-v0.24.2-blue)](https://scikit-learn.org/stable/)

Welcome to the Dataramp documentation! Here you will find information about Dataramp, including some examples to get you started.

## Dataramp

Dataramp is a Python library designed to streamline data science and data analysis workflows. It offers a collection of utility functions and tools tailored to assist data science teams in various aspects of their projects.

By providing a range of functionalities, Dataramp aims to enhance productivity and efficiency in data science projects, empowering teams to focus on deriving meaningful insights from their data.

## Getting Started

Read the quick start guide [here](docs/quickstart.md).

If you want to see some examples, you can look at the examples in the [examples](examples/) directory.

You can install Dataramp and learn more from [PyPi](https://pypi.org/project/dataramp/).


# Example
```python
# Create and register a model pipeline
preprocessor = Pipeline([
    ('scaler', StandardScaler()),
    ('imputer', SimpleImputer())
])

pipeline = Pipeline([
    ('preprocess', preprocessor),
    ('classifier', LogisticRegression())
])

model_save(pipeline, "classifier", method="joblib", metadata={"dataset": "2023_sales"})
register_model(
    pipeline,
    name="sales_classifier",
    version="v1.0",
    metadata={
        "metrics": {"accuracy": 0.89},
        "serialization_method": "joblib"
    }
)

# Create versioned dataset
df = pd.read_csv("data.csv")
data_save(df, "processed_data", versioning=True, description="Initial cleaned version")
```

# Potential Use Cases
- Data Science Projects : Initialize projects with a standardized structure and manage datasets and models effectively.
- Team Collaboration : Facilitate collaboration by providing clear project organization and versioning.
- Reproducibility : Ensure reproducibility by tracking dataset versions, model metadata, and dependencies.
- Automation : Integrate into CI/CD pipelines for automated testing, deployment, and dependency updates.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Kimxons/dataramp",
    "name": "dataramp",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "Meshack Kitonga <kitongameshack9@gmail.com>",
    "keywords": "data science, machine learning, data analysis",
    "author": "Meshack Kitonga",
    "author_email": "Meshack Kitonga <kitongameshack9@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/ef/c0/3300467497486bcfe7ecfe7c4457979975887e4824211e31cfc82040bd8d/dataramp-0.3.5.tar.gz",
    "platform": null,
    "description": "# Dataramp\n\n[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n[![Pylint](https://img.shields.io/badge/pylint-enabled-brightgreen.svg)](https://github.com/PyCQA/pylint)\n[![Flake8](https://img.shields.io/badge/flake8-enabled-blue.svg)](https://flake8.pycqa.org/en/latest/)\n[![Scikit-learn](https://img.shields.io/badge/scikit--learn-v0.24.2-blue)](https://scikit-learn.org/stable/)\n\nWelcome to the Dataramp documentation! Here you will find information about Dataramp, including some examples to get you started.\n\n## Dataramp\n\nDataramp is a Python library designed to streamline data science and data analysis workflows. It offers a collection of utility functions and tools tailored to assist data science teams in various aspects of their projects.\n\nBy providing a range of functionalities, Dataramp aims to enhance productivity and efficiency in data science projects, empowering teams to focus on deriving meaningful insights from their data.\n\n## Getting Started\n\nRead the quick start guide [here](docs/quickstart.md).\n\nIf you want to see some examples, you can look at the examples in the [examples](examples/) directory.\n\nYou can install Dataramp and learn more from [PyPi](https://pypi.org/project/dataramp/).\n\n\n# Example\n```python\n# Create and register a model pipeline\npreprocessor = Pipeline([\n    ('scaler', StandardScaler()),\n    ('imputer', SimpleImputer())\n])\n\npipeline = Pipeline([\n    ('preprocess', preprocessor),\n    ('classifier', LogisticRegression())\n])\n\nmodel_save(pipeline, \"classifier\", method=\"joblib\", metadata={\"dataset\": \"2023_sales\"})\nregister_model(\n    pipeline,\n    name=\"sales_classifier\",\n    version=\"v1.0\",\n    metadata={\n        \"metrics\": {\"accuracy\": 0.89},\n        \"serialization_method\": \"joblib\"\n    }\n)\n\n# Create versioned dataset\ndf = pd.read_csv(\"data.csv\")\ndata_save(df, \"processed_data\", versioning=True, description=\"Initial cleaned version\")\n```\n\n# Potential Use Cases\n- Data Science Projects : Initialize projects with a standardized structure and manage datasets and models effectively.\n- Team Collaboration : Facilitate collaboration by providing clear project organization and versioning.\n- Reproducibility : Ensure reproducibility by tracking dataset versions, model metadata, and dependencies.\n- Automation : Integrate into CI/CD pipelines for automated testing, deployment, and dependency updates.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A Data science library for data science / data analysis teams",
    "version": "0.3.5",
    "project_urls": {
        "Changes": "https://github.com/dataramp/en/latest/release_notes.html",
        "Documentation": "https://github.com/Kimxons/dataramp/tree/main/docs",
        "Homepage": "https://github.com/Kimxons/dataramp",
        "Issue Tracker": "https://github.com/Kimxons/dataramp/issues",
        "Source Code": "https://github.com/Kimxons/dataramp"
    },
    "split_keywords": [
        "data science",
        " machine learning",
        " data analysis"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "033d7cf83a7624b1cfa21c529c80a6c819a388d00f636488f6940d70ee01fa0c",
                "md5": "9f9f4bbd107c27e730116f34314b8a29",
                "sha256": "b4bba9da95f36be402afbe25de5712eaaee826ccbfc86feb767529c1989da6ca"
            },
            "downloads": -1,
            "filename": "dataramp-0.3.5-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "9f9f4bbd107c27e730116f34314b8a29",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": ">=3.7",
            "size": 35273,
            "upload_time": "2025-02-18T19:17:10",
            "upload_time_iso_8601": "2025-02-18T19:17:10.289808Z",
            "url": "https://files.pythonhosted.org/packages/03/3d/7cf83a7624b1cfa21c529c80a6c819a388d00f636488f6940d70ee01fa0c/dataramp-0.3.5-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "efc03300467497486bcfe7ecfe7c4457979975887e4824211e31cfc82040bd8d",
                "md5": "82c6f21c7beff9175f5919647765e1ef",
                "sha256": "41b4783960eb94b455b339953f21e853931bdc73a67b5e745226158a0d16899a"
            },
            "downloads": -1,
            "filename": "dataramp-0.3.5.tar.gz",
            "has_sig": false,
            "md5_digest": "82c6f21c7beff9175f5919647765e1ef",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 33945,
            "upload_time": "2025-02-18T19:17:13",
            "upload_time_iso_8601": "2025-02-18T19:17:13.246940Z",
            "url": "https://files.pythonhosted.org/packages/ef/c0/3300467497486bcfe7ecfe7c4457979975887e4824211e31cfc82040bd8d/dataramp-0.3.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-18 19:17:13",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Kimxons",
    "github_project": "dataramp",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "tox": true,
    "lcname": "dataramp"
}
        
Elapsed time: 0.42302s