# Dataramp
[](https://github.com/psf/black)
[](https://github.com/PyCQA/pylint)
[](https://flake8.pycqa.org/en/latest/)
[](https://scikit-learn.org/stable/)
Welcome to the Dataramp documentation! Here you will find information about Dataramp, including some examples to get you started.
## Dataramp
Dataramp is a Python library designed to streamline data science and data analysis workflows. It offers a collection of utility functions and tools tailored to assist data science teams in various aspects of their projects.
By providing a range of functionalities, Dataramp aims to enhance productivity and efficiency in data science projects, empowering teams to focus on deriving meaningful insights from their data.
## Getting Started
Read the quick start guide [here](docs/quickstart.md).
If you want to see some examples, you can look at the examples in the [examples](examples/) directory.
You can install Dataramp and learn more from [PyPi](https://pypi.org/project/dataramp/).
# Example
```python
# Create and register a model pipeline
preprocessor = Pipeline([
('scaler', StandardScaler()),
('imputer', SimpleImputer())
])
pipeline = Pipeline([
('preprocess', preprocessor),
('classifier', LogisticRegression())
])
model_save(pipeline, "classifier", method="joblib", metadata={"dataset": "2023_sales"})
register_model(
pipeline,
name="sales_classifier",
version="v1.0",
metadata={
"metrics": {"accuracy": 0.89},
"serialization_method": "joblib"
}
)
# Create versioned dataset
df = pd.read_csv("data.csv")
data_save(df, "processed_data", versioning=True, description="Initial cleaned version")
```
# Potential Use Cases
- Data Science Projects : Initialize projects with a standardized structure and manage datasets and models effectively.
- Team Collaboration : Facilitate collaboration by providing clear project organization and versioning.
- Reproducibility : Ensure reproducibility by tracking dataset versions, model metadata, and dependencies.
- Automation : Integrate into CI/CD pipelines for automated testing, deployment, and dependency updates.
Raw data
{
"_id": null,
"home_page": "https://github.com/Kimxons/dataramp",
"name": "dataramp",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "Meshack Kitonga <kitongameshack9@gmail.com>",
"keywords": "data science, machine learning, data analysis",
"author": "Meshack Kitonga",
"author_email": "Meshack Kitonga <kitongameshack9@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/ef/c0/3300467497486bcfe7ecfe7c4457979975887e4824211e31cfc82040bd8d/dataramp-0.3.5.tar.gz",
"platform": null,
"description": "# Dataramp\n\n[](https://github.com/psf/black)\n[](https://github.com/PyCQA/pylint)\n[](https://flake8.pycqa.org/en/latest/)\n[](https://scikit-learn.org/stable/)\n\nWelcome to the Dataramp documentation! Here you will find information about Dataramp, including some examples to get you started.\n\n## Dataramp\n\nDataramp is a Python library designed to streamline data science and data analysis workflows. It offers a collection of utility functions and tools tailored to assist data science teams in various aspects of their projects.\n\nBy providing a range of functionalities, Dataramp aims to enhance productivity and efficiency in data science projects, empowering teams to focus on deriving meaningful insights from their data.\n\n## Getting Started\n\nRead the quick start guide [here](docs/quickstart.md).\n\nIf you want to see some examples, you can look at the examples in the [examples](examples/) directory.\n\nYou can install Dataramp and learn more from [PyPi](https://pypi.org/project/dataramp/).\n\n\n# Example\n```python\n# Create and register a model pipeline\npreprocessor = Pipeline([\n ('scaler', StandardScaler()),\n ('imputer', SimpleImputer())\n])\n\npipeline = Pipeline([\n ('preprocess', preprocessor),\n ('classifier', LogisticRegression())\n])\n\nmodel_save(pipeline, \"classifier\", method=\"joblib\", metadata={\"dataset\": \"2023_sales\"})\nregister_model(\n pipeline,\n name=\"sales_classifier\",\n version=\"v1.0\",\n metadata={\n \"metrics\": {\"accuracy\": 0.89},\n \"serialization_method\": \"joblib\"\n }\n)\n\n# Create versioned dataset\ndf = pd.read_csv(\"data.csv\")\ndata_save(df, \"processed_data\", versioning=True, description=\"Initial cleaned version\")\n```\n\n# Potential Use Cases\n- Data Science Projects : Initialize projects with a standardized structure and manage datasets and models effectively.\n- Team Collaboration : Facilitate collaboration by providing clear project organization and versioning.\n- Reproducibility : Ensure reproducibility by tracking dataset versions, model metadata, and dependencies.\n- Automation : Integrate into CI/CD pipelines for automated testing, deployment, and dependency updates.\n",
"bugtrack_url": null,
"license": null,
"summary": "A Data science library for data science / data analysis teams",
"version": "0.3.5",
"project_urls": {
"Changes": "https://github.com/dataramp/en/latest/release_notes.html",
"Documentation": "https://github.com/Kimxons/dataramp/tree/main/docs",
"Homepage": "https://github.com/Kimxons/dataramp",
"Issue Tracker": "https://github.com/Kimxons/dataramp/issues",
"Source Code": "https://github.com/Kimxons/dataramp"
},
"split_keywords": [
"data science",
" machine learning",
" data analysis"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "033d7cf83a7624b1cfa21c529c80a6c819a388d00f636488f6940d70ee01fa0c",
"md5": "9f9f4bbd107c27e730116f34314b8a29",
"sha256": "b4bba9da95f36be402afbe25de5712eaaee826ccbfc86feb767529c1989da6ca"
},
"downloads": -1,
"filename": "dataramp-0.3.5-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "9f9f4bbd107c27e730116f34314b8a29",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": ">=3.7",
"size": 35273,
"upload_time": "2025-02-18T19:17:10",
"upload_time_iso_8601": "2025-02-18T19:17:10.289808Z",
"url": "https://files.pythonhosted.org/packages/03/3d/7cf83a7624b1cfa21c529c80a6c819a388d00f636488f6940d70ee01fa0c/dataramp-0.3.5-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "efc03300467497486bcfe7ecfe7c4457979975887e4824211e31cfc82040bd8d",
"md5": "82c6f21c7beff9175f5919647765e1ef",
"sha256": "41b4783960eb94b455b339953f21e853931bdc73a67b5e745226158a0d16899a"
},
"downloads": -1,
"filename": "dataramp-0.3.5.tar.gz",
"has_sig": false,
"md5_digest": "82c6f21c7beff9175f5919647765e1ef",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 33945,
"upload_time": "2025-02-18T19:17:13",
"upload_time_iso_8601": "2025-02-18T19:17:13.246940Z",
"url": "https://files.pythonhosted.org/packages/ef/c0/3300467497486bcfe7ecfe7c4457979975887e4824211e31cfc82040bd8d/dataramp-0.3.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-18 19:17:13",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Kimxons",
"github_project": "dataramp",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"tox": true,
"lcname": "dataramp"
}