dataroid


Namedataroid JSON
Version 0.0.4 PyPI version JSON
download
home_page
SummaryA Simple Wrapper For Synthetic Data Generation
upload_time2023-04-14 09:42:58
maintainer
docs_urlNone
authortorchd3v
requires_python
license
keywords python data generate synthetic deep learning model
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ## Installation
```sh
pip install dataroid
```
# Usage Example
```python3
from dataroid import Bot
import pandas as pd

data = pd.read_csv("shopping.csv")

model = Bot(data)
model.generate(5)
```

## Dependencies
- [pandas - A Python package that provides fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. ](https://pandas.pydata.org/)
- [ctgan - CTGAN is a collection of Deep Learning based synthetic data generators for single table data, which are able to learn from real data and generate synthetic data with high fidelity.](https://sdv.dev/)

## Citation
*Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, Kalyan Veeramachaneni.* **Modeling Tabular data using Conditional GAN**. NeurIPS, 2019.

```LaTeX
@inproceedings{ctgan,
  title={Modeling Tabular data using Conditional GAN},
  author={Xu, Lei and Skoularidou, Maria and Cuesta-Infante, Alfredo and Veeramachaneni, Kalyan},
  booktitle={Advances in Neural Information Processing Systems},
  year={2019}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "dataroid",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "python,data,generate,synthetic,deep learning,model",
    "author": "torchd3v",
    "author_email": "<burak96egeli@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/3a/82/3aa22d857ee97caf220b801d233ee22cb8c481e90c0200b50cd0bffe3081/dataroid-0.0.4.tar.gz",
    "platform": null,
    "description": "## Installation\n```sh\npip install dataroid\n```\n# Usage Example\n```python3\nfrom dataroid import Bot\nimport pandas as pd\n\ndata = pd.read_csv(\"shopping.csv\")\n\nmodel = Bot(data)\nmodel.generate(5)\n```\n\n## Dependencies\n- [pandas - A Python package that provides fast, flexible, and expressive data structures designed to make working with \"relational\" or \"labeled\" data both easy and intuitive. ](https://pandas.pydata.org/)\n- [ctgan - CTGAN is a collection of Deep Learning based synthetic data generators for single table data, which are able to learn from real data and generate synthetic data with high fidelity.](https://sdv.dev/)\n\n## Citation\n*Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, Kalyan Veeramachaneni.* **Modeling Tabular data using Conditional GAN**. NeurIPS, 2019.\n\n```LaTeX\n@inproceedings{ctgan,\n  title={Modeling Tabular data using Conditional GAN},\n  author={Xu, Lei and Skoularidou, Maria and Cuesta-Infante, Alfredo and Veeramachaneni, Kalyan},\n  booktitle={Advances in Neural Information Processing Systems},\n  year={2019}\n}\n```\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "A Simple Wrapper For Synthetic Data Generation",
    "version": "0.0.4",
    "split_keywords": [
        "python",
        "data",
        "generate",
        "synthetic",
        "deep learning",
        "model"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fd324d7ff430b1ebe133f6a342c71b90cf362ddca112be1779790b141098ae2f",
                "md5": "569ffa3ef58b1fda14203da55ef9602f",
                "sha256": "ee367808aec4e88cc6bf9b32bda049eace139f5b3eb5381760273d7fde02f88f"
            },
            "downloads": -1,
            "filename": "dataroid-0.0.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "569ffa3ef58b1fda14203da55ef9602f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 2687,
            "upload_time": "2023-04-14T09:42:56",
            "upload_time_iso_8601": "2023-04-14T09:42:56.453445Z",
            "url": "https://files.pythonhosted.org/packages/fd/32/4d7ff430b1ebe133f6a342c71b90cf362ddca112be1779790b141098ae2f/dataroid-0.0.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3a823aa22d857ee97caf220b801d233ee22cb8c481e90c0200b50cd0bffe3081",
                "md5": "0eca2c71f10e296651ed6ccf6f0d562a",
                "sha256": "80b2c9e684188f77920e5fee321921eefd3c7717c336cb43116b47962c95b478"
            },
            "downloads": -1,
            "filename": "dataroid-0.0.4.tar.gz",
            "has_sig": false,
            "md5_digest": "0eca2c71f10e296651ed6ccf6f0d562a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 2476,
            "upload_time": "2023-04-14T09:42:58",
            "upload_time_iso_8601": "2023-04-14T09:42:58.594659Z",
            "url": "https://files.pythonhosted.org/packages/3a/82/3aa22d857ee97caf220b801d233ee22cb8c481e90c0200b50cd0bffe3081/dataroid-0.0.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-04-14 09:42:58",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "dataroid"
}
        
Elapsed time: 0.08078s