datasans-pandamatic


Namedatasans-pandamatic JSON
Version 0.2.4 PyPI version JSON
download
home_pageNone
SummaryLlama-powered code generator for pandas dataframe processing
upload_time2025-02-19 03:29:39
maintainerNone
docs_urlNone
authorDatasans
requires_python>=3.7
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Datasans Pandamatic

A Llama-powered code generator for pandas dataframe processing.

## Installation

```bash
pip install datasans-pandamatic
```

## Usage

```python
import pandas as pd
from datasans_pandamatic import gen

# Load your dataframe
df = pd.read_csv("your_data.csv")

# Generate code with a simple prompt
code = gen(df, "Calculate mean sales by category")
```

## Features

- Llama-powered code generation
- Smart data type handling
- Simple, intuitive API
- Comprehensive error handling

## Changelog

### 0.2.4
- Added source code protection
- Improved module security

### 0.2.3
- Added appreciation link for developer support

### 0.2.2
- Fixed Together API client initialization

### 0.2.1
- Switched to Llama model for code generation
- Simplified API with single function interface
- Removed key code requirement
- Improved error handling and performance

### 0.1.4
- Previous version changelog...

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "datasans-pandamatic",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": null,
    "author": "Datasans",
    "author_email": "datasans.id@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/f7/5b/bef2c814e6b1f14410eb3faeafc75308030e5b7b5d0c9624110c074a024a/datasans_pandamatic-0.2.4.tar.gz",
    "platform": null,
    "description": "# Datasans Pandamatic\n\nA Llama-powered code generator for pandas dataframe processing.\n\n## Installation\n\n```bash\npip install datasans-pandamatic\n```\n\n## Usage\n\n```python\nimport pandas as pd\nfrom datasans_pandamatic import gen\n\n# Load your dataframe\ndf = pd.read_csv(\"your_data.csv\")\n\n# Generate code with a simple prompt\ncode = gen(df, \"Calculate mean sales by category\")\n```\n\n## Features\n\n- Llama-powered code generation\n- Smart data type handling\n- Simple, intuitive API\n- Comprehensive error handling\n\n## Changelog\n\n### 0.2.4\n- Added source code protection\n- Improved module security\n\n### 0.2.3\n- Added appreciation link for developer support\n\n### 0.2.2\n- Fixed Together API client initialization\n\n### 0.2.1\n- Switched to Llama model for code generation\n- Simplified API with single function interface\n- Removed key code requirement\n- Improved error handling and performance\n\n### 0.1.4\n- Previous version changelog...\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Llama-powered code generator for pandas dataframe processing",
    "version": "0.2.4",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "f96686a7d7478b5cc56804f59056b37ad1bb8567c47c013459985ec8f8f7b444",
                "md5": "ca0e1dd621fbc4bcd12e546e17845f52",
                "sha256": "764e8fee94c2ed5f51b18c928979ef7666d8c601ed6c5c6afaf5e991d2af9737"
            },
            "downloads": -1,
            "filename": "datasans_pandamatic-0.2.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ca0e1dd621fbc4bcd12e546e17845f52",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 7929,
            "upload_time": "2025-02-19T03:29:37",
            "upload_time_iso_8601": "2025-02-19T03:29:37.711749Z",
            "url": "https://files.pythonhosted.org/packages/f9/66/86a7d7478b5cc56804f59056b37ad1bb8567c47c013459985ec8f8f7b444/datasans_pandamatic-0.2.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "f75bbef2c814e6b1f14410eb3faeafc75308030e5b7b5d0c9624110c074a024a",
                "md5": "9dc9785f0b26023b62bebd7ccc7584ea",
                "sha256": "aaaf84b4faa5e053c12772b48c485677c0d3f4ad365cdbf83b8307b33de716ec"
            },
            "downloads": -1,
            "filename": "datasans_pandamatic-0.2.4.tar.gz",
            "has_sig": false,
            "md5_digest": "9dc9785f0b26023b62bebd7ccc7584ea",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 7819,
            "upload_time": "2025-02-19T03:29:39",
            "upload_time_iso_8601": "2025-02-19T03:29:39.354708Z",
            "url": "https://files.pythonhosted.org/packages/f7/5b/bef2c814e6b1f14410eb3faeafc75308030e5b7b5d0c9624110c074a024a/datasans_pandamatic-0.2.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-19 03:29:39",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "datasans-pandamatic"
}
        
Elapsed time: 0.97870s