Name | datasans-pandamatic JSON |
Version |
0.2.4
JSON |
| download |
home_page | None |
Summary | Llama-powered code generator for pandas dataframe processing |
upload_time | 2025-02-19 03:29:39 |
maintainer | None |
docs_url | None |
author | Datasans |
requires_python | >=3.7 |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# Datasans Pandamatic
A Llama-powered code generator for pandas dataframe processing.
## Installation
```bash
pip install datasans-pandamatic
```
## Usage
```python
import pandas as pd
from datasans_pandamatic import gen
# Load your dataframe
df = pd.read_csv("your_data.csv")
# Generate code with a simple prompt
code = gen(df, "Calculate mean sales by category")
```
## Features
- Llama-powered code generation
- Smart data type handling
- Simple, intuitive API
- Comprehensive error handling
## Changelog
### 0.2.4
- Added source code protection
- Improved module security
### 0.2.3
- Added appreciation link for developer support
### 0.2.2
- Fixed Together API client initialization
### 0.2.1
- Switched to Llama model for code generation
- Simplified API with single function interface
- Removed key code requirement
- Improved error handling and performance
### 0.1.4
- Previous version changelog...
Raw data
{
"_id": null,
"home_page": null,
"name": "datasans-pandamatic",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": null,
"author": "Datasans",
"author_email": "datasans.id@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/f7/5b/bef2c814e6b1f14410eb3faeafc75308030e5b7b5d0c9624110c074a024a/datasans_pandamatic-0.2.4.tar.gz",
"platform": null,
"description": "# Datasans Pandamatic\n\nA Llama-powered code generator for pandas dataframe processing.\n\n## Installation\n\n```bash\npip install datasans-pandamatic\n```\n\n## Usage\n\n```python\nimport pandas as pd\nfrom datasans_pandamatic import gen\n\n# Load your dataframe\ndf = pd.read_csv(\"your_data.csv\")\n\n# Generate code with a simple prompt\ncode = gen(df, \"Calculate mean sales by category\")\n```\n\n## Features\n\n- Llama-powered code generation\n- Smart data type handling\n- Simple, intuitive API\n- Comprehensive error handling\n\n## Changelog\n\n### 0.2.4\n- Added source code protection\n- Improved module security\n\n### 0.2.3\n- Added appreciation link for developer support\n\n### 0.2.2\n- Fixed Together API client initialization\n\n### 0.2.1\n- Switched to Llama model for code generation\n- Simplified API with single function interface\n- Removed key code requirement\n- Improved error handling and performance\n\n### 0.1.4\n- Previous version changelog...\n",
"bugtrack_url": null,
"license": null,
"summary": "Llama-powered code generator for pandas dataframe processing",
"version": "0.2.4",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "f96686a7d7478b5cc56804f59056b37ad1bb8567c47c013459985ec8f8f7b444",
"md5": "ca0e1dd621fbc4bcd12e546e17845f52",
"sha256": "764e8fee94c2ed5f51b18c928979ef7666d8c601ed6c5c6afaf5e991d2af9737"
},
"downloads": -1,
"filename": "datasans_pandamatic-0.2.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "ca0e1dd621fbc4bcd12e546e17845f52",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 7929,
"upload_time": "2025-02-19T03:29:37",
"upload_time_iso_8601": "2025-02-19T03:29:37.711749Z",
"url": "https://files.pythonhosted.org/packages/f9/66/86a7d7478b5cc56804f59056b37ad1bb8567c47c013459985ec8f8f7b444/datasans_pandamatic-0.2.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f75bbef2c814e6b1f14410eb3faeafc75308030e5b7b5d0c9624110c074a024a",
"md5": "9dc9785f0b26023b62bebd7ccc7584ea",
"sha256": "aaaf84b4faa5e053c12772b48c485677c0d3f4ad365cdbf83b8307b33de716ec"
},
"downloads": -1,
"filename": "datasans_pandamatic-0.2.4.tar.gz",
"has_sig": false,
"md5_digest": "9dc9785f0b26023b62bebd7ccc7584ea",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 7819,
"upload_time": "2025-02-19T03:29:39",
"upload_time_iso_8601": "2025-02-19T03:29:39.354708Z",
"url": "https://files.pythonhosted.org/packages/f7/5b/bef2c814e6b1f14410eb3faeafc75308030e5b7b5d0c9624110c074a024a/datasans_pandamatic-0.2.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-19 03:29:39",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "datasans-pandamatic"
}