# datasetsforecast
<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->
Datasets for time series forecasting
## Install
``` sh
pip install datasetsforecast
```
## Datasets
- [Favorita](https://nixtlaverse.nixtla.io/datasetsforecast/favorita.html)
- [Hierarchical](https://nixtlaverse.nixtla.io/datasetsforecast/hierarchical.html)
- [Long
horizon](https://nixtlaverse.nixtla.io/datasetsforecast/long_horizon.html)
- [M3](https://nixtlaverse.nixtla.io/datasetsforecast/m3.html)
- [M4](https://nixtlaverse.nixtla.io/datasetsforecast/m4.html)
- [M5](https://nixtlaverse.nixtla.io/datasetsforecast/m5.html)
- [PHM2008](https://nixtlaverse.nixtla.io/datasetsforecast/phm2008.html)
## How to use
All the modules have a `load` method which you can use to load the
dataset for a specific group. If you don’t have the data locally it will
be downloaded for you.
``` python
from datasetsforecast.phm2008 import PHM2008
```
``` python
train_df, test_df = PHM2008.load(directory='data', group='FD001')
train_df.shape, test_df.shape
```
((20631, 17), (13096, 17))
Raw data
{
"_id": null,
"home_page": "https://github.com/Nixtla/datasetsforecast/tree/main/",
"name": "datasetsforecast",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "time-series forecasting datasets",
"author": "Nixtla",
"author_email": "business@nixtla.io",
"download_url": "https://files.pythonhosted.org/packages/2d/77/a5a76b16666132cac1368d8da1134f5173ca20a5433dd4a685b1dd7f46fe/datasetsforecast-1.0.0.tar.gz",
"platform": null,
"description": "# datasetsforecast\n\n<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->\n\nDatasets for time series forecasting\n\n## Install\n\n``` sh\npip install datasetsforecast\n```\n\n## Datasets\n\n- [Favorita](https://nixtlaverse.nixtla.io/datasetsforecast/favorita.html)\n- [Hierarchical](https://nixtlaverse.nixtla.io/datasetsforecast/hierarchical.html)\n- [Long\n horizon](https://nixtlaverse.nixtla.io/datasetsforecast/long_horizon.html)\n- [M3](https://nixtlaverse.nixtla.io/datasetsforecast/m3.html)\n- [M4](https://nixtlaverse.nixtla.io/datasetsforecast/m4.html)\n- [M5](https://nixtlaverse.nixtla.io/datasetsforecast/m5.html)\n- [PHM2008](https://nixtlaverse.nixtla.io/datasetsforecast/phm2008.html)\n\n## How to use\n\nAll the modules have a `load` method which you can use to load the\ndataset for a specific group. If you don\u2019t have the data locally it will\nbe downloaded for you.\n\n``` python\nfrom datasetsforecast.phm2008 import PHM2008\n```\n\n``` python\ntrain_df, test_df = PHM2008.load(directory='data', group='FD001')\ntrain_df.shape, test_df.shape\n```\n\n ((20631, 17), (13096, 17))\n",
"bugtrack_url": null,
"license": "MIT License",
"summary": "Datasets for Time series forecasting",
"version": "1.0.0",
"project_urls": {
"Homepage": "https://github.com/Nixtla/datasetsforecast/tree/main/"
},
"split_keywords": [
"time-series",
"forecasting",
"datasets"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "86e23fc14cd4ed4633e8d69e81f85dc7cf4615852dd605d5ebdfbf9bccc2c2a3",
"md5": "32785be0a5e5f3698b7835694d616197",
"sha256": "0a958447ceaf94ff5e4aa6318d3a2f277fb6aecdf8724ac021f54bf6a7461a9d"
},
"downloads": -1,
"filename": "datasetsforecast-1.0.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "32785be0a5e5f3698b7835694d616197",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 34537,
"upload_time": "2024-12-06T00:11:46",
"upload_time_iso_8601": "2024-12-06T00:11:46.955107Z",
"url": "https://files.pythonhosted.org/packages/86/e2/3fc14cd4ed4633e8d69e81f85dc7cf4615852dd605d5ebdfbf9bccc2c2a3/datasetsforecast-1.0.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "2d77a5a76b16666132cac1368d8da1134f5173ca20a5433dd4a685b1dd7f46fe",
"md5": "d5d0561ad2b9fde7e4e6358ed5875bc8",
"sha256": "7daa1342fe30cef66f9f61b08cf17b0b68b4de3c02a61ab2569e71b72779a8ad"
},
"downloads": -1,
"filename": "datasetsforecast-1.0.0.tar.gz",
"has_sig": false,
"md5_digest": "d5d0561ad2b9fde7e4e6358ed5875bc8",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 30586,
"upload_time": "2024-12-06T00:11:48",
"upload_time_iso_8601": "2024-12-06T00:11:48.523424Z",
"url": "https://files.pythonhosted.org/packages/2d/77/a5a76b16666132cac1368d8da1134f5173ca20a5433dd4a685b1dd7f46fe/datasetsforecast-1.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-06 00:11:48",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Nixtla",
"github_project": "datasetsforecast",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "datasetsforecast"
}