# datasette-geojson
[![PyPI](https://img.shields.io/pypi/v/datasette-geojson.svg)](https://pypi.org/project/datasette-geojson/)
[![Changelog](https://img.shields.io/github/v/release/eyeseast/datasette-geojson?include_prereleases&label=changelog)](https://github.com/eyeseast/datasette-geojson/releases)
[![Tests](https://github.com/eyeseast/datasette-geojson/workflows/Test/badge.svg)](https://github.com/eyeseast/datasette-geojson/actions?query=workflow%3ATest)
[![License](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/eyeseast/datasette-geojson/blob/main/LICENSE)
Add GeoJSON as an output option for datasette queries.
## Installation
Install this plugin in the same environment as Datasette.
datasette install datasette-geojson
## Usage
To render GeoJSON, add a `.geojson` extension to any query URL that includes a `geometry` column. That column should be a valid [GeoJSON geometry](https://datatracker.ietf.org/doc/html/rfc7946#section-3.1).
For example, you might use [geojson-to-sqlite](https://pypi.org/project/geojson-to-sqlite/) or [shapefile-to-sqlite](https://pypi.org/project/shapefile-to-sqlite/) to load [neighborhood boundaries](https://bostonopendata-boston.opendata.arcgis.com/datasets/3525b0ee6e6b427f9aab5d0a1d0a1a28_0/explore) into a SQLite database.
```sh
wget -O neighborhoods.geojson https://opendata.arcgis.com/datasets/3525b0ee6e6b427f9aab5d0a1d0a1a28_0.geojson
geojson-to-sqlite boston.db neighborhoods neighborhoods.geojson --spatial-index # create a spatial index
datasette serve boston.db --load-extension spatialite
```
If you're using Spatialite, the geometry column will be in a binary format. If not, make sure the `geometry` column is a well-formed [GeoJSON geometry](https://datatracker.ietf.org/doc/html/rfc7946#section-3.1). If you used `geojson-to-sqlite` or `shapefile-to-sqlite`, you should be all set.
Run this query in Datasette and you'll see a link to download GeoJSON:
```sql
select
rowid,
OBJECTID,
Name,
Acres,
Neighborhood_ID,
SqMiles,
ShapeSTArea,
ShapeSTLength,
geometry
from
neighborhoods
order by
rowid
limit
101
```
Note that the geometry column needs to be explicitly _named_ `geometry` or you won't get the option to export GeoJSON. If you want to use a different column, rename it with `AS`: `SELECT other AS geometry FROM my_table`.
![export geojson](img/export-options.png)
## Development
To set up this plugin locally, first checkout the code. Then create a new virtual environment:
cd datasette-geojson
python3 -mvenv venv
source venv/bin/activate
Or if you are using `pipenv`:
pipenv shell
Now install the dependencies and tests:
pip install -e '.[test]'
To run the tests:
pytest
Raw data
{
"_id": null,
"home_page": "https://github.com/eyeseast/datasette-geojson",
"name": "datasette-geojson",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "",
"author": "Chris Amico",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/f6/d3/a2cc7e759ca701e403bb2470f9fce14170ead6fc0a309061edac2b9aa0e3/datasette-geojson-0.4.0.tar.gz",
"platform": null,
"description": "# datasette-geojson\n\n[![PyPI](https://img.shields.io/pypi/v/datasette-geojson.svg)](https://pypi.org/project/datasette-geojson/)\n[![Changelog](https://img.shields.io/github/v/release/eyeseast/datasette-geojson?include_prereleases&label=changelog)](https://github.com/eyeseast/datasette-geojson/releases)\n[![Tests](https://github.com/eyeseast/datasette-geojson/workflows/Test/badge.svg)](https://github.com/eyeseast/datasette-geojson/actions?query=workflow%3ATest)\n[![License](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/eyeseast/datasette-geojson/blob/main/LICENSE)\n\nAdd GeoJSON as an output option for datasette queries.\n\n## Installation\n\nInstall this plugin in the same environment as Datasette.\n\n datasette install datasette-geojson\n\n## Usage\n\nTo render GeoJSON, add a `.geojson` extension to any query URL that includes a `geometry` column. That column should be a valid [GeoJSON geometry](https://datatracker.ietf.org/doc/html/rfc7946#section-3.1).\n\nFor example, you might use [geojson-to-sqlite](https://pypi.org/project/geojson-to-sqlite/) or [shapefile-to-sqlite](https://pypi.org/project/shapefile-to-sqlite/) to load [neighborhood boundaries](https://bostonopendata-boston.opendata.arcgis.com/datasets/3525b0ee6e6b427f9aab5d0a1d0a1a28_0/explore) into a SQLite database.\n\n```sh\nwget -O neighborhoods.geojson https://opendata.arcgis.com/datasets/3525b0ee6e6b427f9aab5d0a1d0a1a28_0.geojson\ngeojson-to-sqlite boston.db neighborhoods neighborhoods.geojson --spatial-index # create a spatial index\ndatasette serve boston.db --load-extension spatialite\n```\n\nIf you're using Spatialite, the geometry column will be in a binary format. If not, make sure the `geometry` column is a well-formed [GeoJSON geometry](https://datatracker.ietf.org/doc/html/rfc7946#section-3.1). If you used `geojson-to-sqlite` or `shapefile-to-sqlite`, you should be all set.\n\nRun this query in Datasette and you'll see a link to download GeoJSON:\n\n```sql\nselect\n rowid,\n OBJECTID,\n Name,\n Acres,\n Neighborhood_ID,\n SqMiles,\n ShapeSTArea,\n ShapeSTLength,\n geometry\nfrom\n neighborhoods\norder by\n rowid\nlimit\n 101\n```\n\nNote that the geometry column needs to be explicitly _named_ `geometry` or you won't get the option to export GeoJSON. If you want to use a different column, rename it with `AS`: `SELECT other AS geometry FROM my_table`.\n\n![export geojson](img/export-options.png)\n\n## Development\n\nTo set up this plugin locally, first checkout the code. Then create a new virtual environment:\n\n cd datasette-geojson\n python3 -mvenv venv\n source venv/bin/activate\n\nOr if you are using `pipenv`:\n\n pipenv shell\n\nNow install the dependencies and tests:\n\n pip install -e '.[test]'\n\nTo run the tests:\n\n pytest\n",
"bugtrack_url": null,
"license": "Apache License, Version 2.0",
"summary": "Add GeoJSON as an output option",
"version": "0.4.0",
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "39f7ecc8fd2265efe8e0866b34e0e7ecb7ce08e5559d466f8e9dbe6360f151eb",
"md5": "3a665a3f61354003716e5d8a28bebf95",
"sha256": "6de231185b40d1ea07775f0e09d15ac2d9879685b8b683a84442a96371b971f4"
},
"downloads": -1,
"filename": "datasette_geojson-0.4.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "3a665a3f61354003716e5d8a28bebf95",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 3668,
"upload_time": "2023-01-06T21:24:39",
"upload_time_iso_8601": "2023-01-06T21:24:39.591225Z",
"url": "https://files.pythonhosted.org/packages/39/f7/ecc8fd2265efe8e0866b34e0e7ecb7ce08e5559d466f8e9dbe6360f151eb/datasette_geojson-0.4.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f6d3a2cc7e759ca701e403bb2470f9fce14170ead6fc0a309061edac2b9aa0e3",
"md5": "1001d985f01458079d2f0edf24df44f4",
"sha256": "ecf7ca75b084b57d0a8007cfb9965cdae53fbb29fe8f0a41feffff941a23da8a"
},
"downloads": -1,
"filename": "datasette-geojson-0.4.0.tar.gz",
"has_sig": false,
"md5_digest": "1001d985f01458079d2f0edf24df44f4",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 3428,
"upload_time": "2023-01-06T21:24:40",
"upload_time_iso_8601": "2023-01-06T21:24:40.825892Z",
"url": "https://files.pythonhosted.org/packages/f6/d3/a2cc7e759ca701e403bb2470f9fce14170ead6fc0a309061edac2b9aa0e3/datasette-geojson-0.4.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-01-06 21:24:40",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "eyeseast",
"github_project": "datasette-geojson",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "datasette-geojson"
}