datasette-llm-usage


Namedatasette-llm-usage JSON
Version 0.1a0 PyPI version JSON
download
home_pageNone
SummaryTrack usage of LLM tokens in a SQLite table
upload_time2024-12-02 20:40:39
maintainerNone
docs_urlNone
authorSimon Willison
requires_python>=3.9
licenseApache-2.0
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # datasette-llm-usage

[![PyPI](https://img.shields.io/pypi/v/datasette-llm-usage.svg)](https://pypi.org/project/datasette-llm-usage/)
[![Changelog](https://img.shields.io/github/v/release/datasette/datasette-llm-usage?include_prereleases&label=changelog)](https://github.com/datasette/datasette-llm-usage/releases)
[![Tests](https://github.com/datasette/datasette-llm-usage/actions/workflows/test.yml/badge.svg)](https://github.com/datasette/datasette-llm-usage/actions/workflows/test.yml)
[![License](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/datasette/datasette-llm-usage/blob/main/LICENSE)

Track usage of LLM tokens in a SQLite table

This is a **very early alpha**.

## Installation

Install this plugin in the same environment as Datasette.
```bash
datasette install datasette-llm-usage
```
## Usage

This plugin adds functionality to track and manage LLM token usage in Datasette. It creates two tables.

- `_llm_usage`: Tracks usage of LLM tokens
- `_llm_allowance`: Manages credit allowances for LLM usage

### Configuration

By default the tables are created in the internal database passed to Datasette using `--internal internal.db`. You can change that by setting the following in your Datasette plugin configuration:

```json
{
    "plugins": {
        "datasette-llm-usage": {
            "database": "your_database_name"
        }
    }
}
```

### Setting up allowances

Before using LLM models, you need to set up an allowance in the `_llm_allowance` table. You can do this with SQL like:

```sql
insert into _llm_allowance (
    id,
    created,
    credits_remaining,
    daily_reset,
    daily_reset_amount,
    purpose
) values (
    1,
    strftime('%s', 'now')
    10000,
    0,
    0,
    null
);
```
The other columns are not yet used.

### Using the LLM wrapper

The plugin provides an `LLM` class that wraps the `llm` library to track token usage:

```python
from datasette_llm_usage import LLM

llm = LLM(datasette)

# Get available models
models = llm.get_async_models()

# Get a specific model
model = llm.get_async_model("gpt-4o-mini", purpose="my_purpose")

# Use the model
response = await model.prompt("Your prompt here")
text = await response.text()
```
Usage will be automatically recorded.

### Built-in endpoint

The plugin provides a simple demo endpoint at `/-/llm-usage-simple-prompt` that requires authentication and uses the gpt-4o-mini model.

### Supported Models and Pricing

The plugin includes pricing information for various models including:

- Gemini models (1.5-flash, 1.5-pro)
- Claude models (3.5-sonnet, 3-opus, 3-haiku)
- GPT models (gpt-4o, gpt-4o-mini, o1-preview, o1-mini)

Different models have different input and output token costs.

## Development

To set up this plugin locally, first checkout the code. Then create a new virtual environment:
```bash
cd datasette-llm-usage
python -m venv venv
source venv/bin/activate
```
Now install the dependencies and test dependencies:
```bash
pip install -e '.[test]'
```
To run the tests:
```bash
python -m pytest
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "datasette-llm-usage",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": null,
    "author": "Simon Willison",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/47/a4/bdaaa6e0c81b15881c7a2c0881a3135464dee2f673ee1c704ad438325dd7/datasette_llm_usage-0.1a0.tar.gz",
    "platform": null,
    "description": "# datasette-llm-usage\n\n[![PyPI](https://img.shields.io/pypi/v/datasette-llm-usage.svg)](https://pypi.org/project/datasette-llm-usage/)\n[![Changelog](https://img.shields.io/github/v/release/datasette/datasette-llm-usage?include_prereleases&label=changelog)](https://github.com/datasette/datasette-llm-usage/releases)\n[![Tests](https://github.com/datasette/datasette-llm-usage/actions/workflows/test.yml/badge.svg)](https://github.com/datasette/datasette-llm-usage/actions/workflows/test.yml)\n[![License](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/datasette/datasette-llm-usage/blob/main/LICENSE)\n\nTrack usage of LLM tokens in a SQLite table\n\nThis is a **very early alpha**.\n\n## Installation\n\nInstall this plugin in the same environment as Datasette.\n```bash\ndatasette install datasette-llm-usage\n```\n## Usage\n\nThis plugin adds functionality to track and manage LLM token usage in Datasette. It creates two tables.\n\n- `_llm_usage`: Tracks usage of LLM tokens\n- `_llm_allowance`: Manages credit allowances for LLM usage\n\n### Configuration\n\nBy default the tables are created in the internal database passed to Datasette using `--internal internal.db`. You can change that by setting the following in your Datasette plugin configuration:\n\n```json\n{\n    \"plugins\": {\n        \"datasette-llm-usage\": {\n            \"database\": \"your_database_name\"\n        }\n    }\n}\n```\n\n### Setting up allowances\n\nBefore using LLM models, you need to set up an allowance in the `_llm_allowance` table. You can do this with SQL like:\n\n```sql\ninsert into _llm_allowance (\n    id,\n    created,\n    credits_remaining,\n    daily_reset,\n    daily_reset_amount,\n    purpose\n) values (\n    1,\n    strftime('%s', 'now')\n    10000,\n    0,\n    0,\n    null\n);\n```\nThe other columns are not yet used.\n\n### Using the LLM wrapper\n\nThe plugin provides an `LLM` class that wraps the `llm` library to track token usage:\n\n```python\nfrom datasette_llm_usage import LLM\n\nllm = LLM(datasette)\n\n# Get available models\nmodels = llm.get_async_models()\n\n# Get a specific model\nmodel = llm.get_async_model(\"gpt-4o-mini\", purpose=\"my_purpose\")\n\n# Use the model\nresponse = await model.prompt(\"Your prompt here\")\ntext = await response.text()\n```\nUsage will be automatically recorded.\n\n### Built-in endpoint\n\nThe plugin provides a simple demo endpoint at `/-/llm-usage-simple-prompt` that requires authentication and uses the gpt-4o-mini model.\n\n### Supported Models and Pricing\n\nThe plugin includes pricing information for various models including:\n\n- Gemini models (1.5-flash, 1.5-pro)\n- Claude models (3.5-sonnet, 3-opus, 3-haiku)\n- GPT models (gpt-4o, gpt-4o-mini, o1-preview, o1-mini)\n\nDifferent models have different input and output token costs.\n\n## Development\n\nTo set up this plugin locally, first checkout the code. Then create a new virtual environment:\n```bash\ncd datasette-llm-usage\npython -m venv venv\nsource venv/bin/activate\n```\nNow install the dependencies and test dependencies:\n```bash\npip install -e '.[test]'\n```\nTo run the tests:\n```bash\npython -m pytest\n```\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Track usage of LLM tokens in a SQLite table",
    "version": "0.1a0",
    "project_urls": {
        "CI": "https://github.com/datasette/datasette-llm-usage/actions",
        "Changelog": "https://github.com/datasette/datasette-llm-usage/releases",
        "Homepage": "https://github.com/datasette/datasette-llm-usage",
        "Issues": "https://github.com/datasette/datasette-llm-usage/issues"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "78fdaeaeb77915a93c0ff6035eaf177ac87368374af527e4ea66446bd668a440",
                "md5": "c573834253a1dc08a3a8593ff9f027ba",
                "sha256": "1df205c636eeb063daaf74c4794b7f23529194554fad2167a5276238f5ff28b0"
            },
            "downloads": -1,
            "filename": "datasette_llm_usage-0.1a0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c573834253a1dc08a3a8593ff9f027ba",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 9409,
            "upload_time": "2024-12-02T20:40:37",
            "upload_time_iso_8601": "2024-12-02T20:40:37.960158Z",
            "url": "https://files.pythonhosted.org/packages/78/fd/aeaeb77915a93c0ff6035eaf177ac87368374af527e4ea66446bd668a440/datasette_llm_usage-0.1a0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "47a4bdaaa6e0c81b15881c7a2c0881a3135464dee2f673ee1c704ad438325dd7",
                "md5": "10f9348fd5210aea0d4e3c636405fb12",
                "sha256": "6afc779c99b135a1ad6a74b1dc9dcf1cf4f16298a042bb69639e46e1219b5509"
            },
            "downloads": -1,
            "filename": "datasette_llm_usage-0.1a0.tar.gz",
            "has_sig": false,
            "md5_digest": "10f9348fd5210aea0d4e3c636405fb12",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 9304,
            "upload_time": "2024-12-02T20:40:39",
            "upload_time_iso_8601": "2024-12-02T20:40:39.867402Z",
            "url": "https://files.pythonhosted.org/packages/47/a4/bdaaa6e0c81b15881c7a2c0881a3135464dee2f673ee1c704ad438325dd7/datasette_llm_usage-0.1a0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-02 20:40:39",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "datasette",
    "github_project": "datasette-llm-usage",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "datasette-llm-usage"
}
        
Elapsed time: 0.35405s