datasketch


Namedatasketch JSON
Version 1.6.5 PyPI version JSON
download
home_pagehttps://ekzhu.github.io/datasketch
SummaryProbabilistic data structures for processing and searching very large datasets
upload_time2024-06-04 00:44:21
maintainerNone
docs_urlNone
authorekzhu
requires_pythonNone
licenseMIT
keywords database datamining
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            datasketch: Big Data Looks Small
================================

.. image:: https://static.pepy.tech/badge/datasketch/month
    :target: https://pepy.tech/project/datasketch

.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.598238.svg
   :target: https://zenodo.org/doi/10.5281/zenodo.598238

datasketch gives you probabilistic data structures that can process and
search very large amount of data super fast, with little loss of
accuracy.

This package contains the following data sketches:

+-------------------------+-----------------------------------------------+
| Data Sketch             | Usage                                         |
+=========================+===============================================+
| `MinHash`_              | estimate Jaccard similarity and cardinality   |
+-------------------------+-----------------------------------------------+
| `Weighted MinHash`_     | estimate weighted Jaccard similarity          |
+-------------------------+-----------------------------------------------+
| `HyperLogLog`_          | estimate cardinality                          |
+-------------------------+-----------------------------------------------+
| `HyperLogLog++`_        | estimate cardinality                          |
+-------------------------+-----------------------------------------------+

The following indexes for data sketches are provided to support
sub-linear query time:

+---------------------------+-----------------------------+------------------------+
| Index                     | For Data Sketch             | Supported Query Type   |
+===========================+=============================+========================+
| `MinHash LSH`_            | MinHash, Weighted MinHash   | Jaccard Threshold      |
+---------------------------+-----------------------------+------------------------+
| `MinHash LSH Forest`_     | MinHash, Weighted MinHash   | Jaccard Top-K          |
+---------------------------+-----------------------------+------------------------+
| `MinHash LSH Ensemble`_   | MinHash                     | Containment Threshold  |
+---------------------------+-----------------------------+------------------------+
| `HNSW`_                   | Any                         | Custom Metric Top-K    |
+---------------------------+-----------------------------+------------------------+

datasketch must be used with Python 3.7 or above, NumPy 1.11 or above, and Scipy. 

Note that `MinHash LSH`_ and `MinHash LSH Ensemble`_ also support Redis and Cassandra 
storage layer (see `MinHash LSH at Scale`_).

Install
-------

To install datasketch using ``pip``:

::

    pip install datasketch

This will also install NumPy as dependency.

To install with Redis dependency:

::

    pip install datasketch[redis]

To install with Cassandra dependency:

::

    pip install datasketch[cassandra]


.. _`MinHash`: https://ekzhu.github.io/datasketch/minhash.html
.. _`Weighted MinHash`: https://ekzhu.github.io/datasketch/weightedminhash.html
.. _`HyperLogLog`: https://ekzhu.github.io/datasketch/hyperloglog.html
.. _`HyperLogLog++`: https://ekzhu.github.io/datasketch/hyperloglog.html#hyperloglog-plusplus
.. _`MinHash LSH`: https://ekzhu.github.io/datasketch/lsh.html
.. _`MinHash LSH Forest`: https://ekzhu.github.io/datasketch/lshforest.html
.. _`MinHash LSH Ensemble`: https://ekzhu.github.io/datasketch/lshensemble.html
.. _`Minhash LSH at Scale`: http://ekzhu.github.io/datasketch/lsh.html#minhash-lsh-at-scale
.. _`HNSW`: https://ekzhu.github.io/datasketch/documentation.html#hnsw

            

Raw data

            {
    "_id": null,
    "home_page": "https://ekzhu.github.io/datasketch",
    "name": "datasketch",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "database datamining",
    "author": "ekzhu",
    "author_email": "ekzhu@cs.toronto.edu",
    "download_url": "https://files.pythonhosted.org/packages/88/2f/248057ca4d22bd3ffb9bb3e9f4c208240a27e4d0ca9687d6d1d896aeec2a/datasketch-1.6.5.tar.gz",
    "platform": null,
    "description": "datasketch: Big Data Looks Small\n================================\n\n.. image:: https://static.pepy.tech/badge/datasketch/month\n    :target: https://pepy.tech/project/datasketch\n\n.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.598238.svg\n   :target: https://zenodo.org/doi/10.5281/zenodo.598238\n\ndatasketch gives you probabilistic data structures that can process and\nsearch very large amount of data super fast, with little loss of\naccuracy.\n\nThis package contains the following data sketches:\n\n+-------------------------+-----------------------------------------------+\n| Data Sketch             | Usage                                         |\n+=========================+===============================================+\n| `MinHash`_              | estimate Jaccard similarity and cardinality   |\n+-------------------------+-----------------------------------------------+\n| `Weighted MinHash`_     | estimate weighted Jaccard similarity          |\n+-------------------------+-----------------------------------------------+\n| `HyperLogLog`_          | estimate cardinality                          |\n+-------------------------+-----------------------------------------------+\n| `HyperLogLog++`_        | estimate cardinality                          |\n+-------------------------+-----------------------------------------------+\n\nThe following indexes for data sketches are provided to support\nsub-linear query time:\n\n+---------------------------+-----------------------------+------------------------+\n| Index                     | For Data Sketch             | Supported Query Type   |\n+===========================+=============================+========================+\n| `MinHash LSH`_            | MinHash, Weighted MinHash   | Jaccard Threshold      |\n+---------------------------+-----------------------------+------------------------+\n| `MinHash LSH Forest`_     | MinHash, Weighted MinHash   | Jaccard Top-K          |\n+---------------------------+-----------------------------+------------------------+\n| `MinHash LSH Ensemble`_   | MinHash                     | Containment Threshold  |\n+---------------------------+-----------------------------+------------------------+\n| `HNSW`_                   | Any                         | Custom Metric Top-K    |\n+---------------------------+-----------------------------+------------------------+\n\ndatasketch must be used with Python 3.7 or above, NumPy 1.11 or above, and Scipy. \n\nNote that `MinHash LSH`_ and `MinHash LSH Ensemble`_ also support Redis and Cassandra \nstorage layer (see `MinHash LSH at Scale`_).\n\nInstall\n-------\n\nTo install datasketch using ``pip``:\n\n::\n\n    pip install datasketch\n\nThis will also install NumPy as dependency.\n\nTo install with Redis dependency:\n\n::\n\n    pip install datasketch[redis]\n\nTo install with Cassandra dependency:\n\n::\n\n    pip install datasketch[cassandra]\n\n\n.. _`MinHash`: https://ekzhu.github.io/datasketch/minhash.html\n.. _`Weighted MinHash`: https://ekzhu.github.io/datasketch/weightedminhash.html\n.. _`HyperLogLog`: https://ekzhu.github.io/datasketch/hyperloglog.html\n.. _`HyperLogLog++`: https://ekzhu.github.io/datasketch/hyperloglog.html#hyperloglog-plusplus\n.. _`MinHash LSH`: https://ekzhu.github.io/datasketch/lsh.html\n.. _`MinHash LSH Forest`: https://ekzhu.github.io/datasketch/lshforest.html\n.. _`MinHash LSH Ensemble`: https://ekzhu.github.io/datasketch/lshensemble.html\n.. _`Minhash LSH at Scale`: http://ekzhu.github.io/datasketch/lsh.html#minhash-lsh-at-scale\n.. _`HNSW`: https://ekzhu.github.io/datasketch/documentation.html#hnsw\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Probabilistic data structures for processing and searching very large datasets",
    "version": "1.6.5",
    "project_urls": {
        "Homepage": "https://ekzhu.github.io/datasketch",
        "Source": "https://github.com/ekzhu/datasketch"
    },
    "split_keywords": [
        "database",
        "datamining"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8d24c8b0570c17c64e9d00485ac6f325c3a7ba19ea8b3385c73c85a26a519d77",
                "md5": "7f6b21ced1bf0b646e1189cb34f900a2",
                "sha256": "59311b2925b2f37536e9f7c2f46bbc25e8e54379c8635a3fa7ca55d2abb66d1b"
            },
            "downloads": -1,
            "filename": "datasketch-1.6.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7f6b21ced1bf0b646e1189cb34f900a2",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 89246,
            "upload_time": "2024-06-04T00:44:18",
            "upload_time_iso_8601": "2024-06-04T00:44:18.678931Z",
            "url": "https://files.pythonhosted.org/packages/8d/24/c8b0570c17c64e9d00485ac6f325c3a7ba19ea8b3385c73c85a26a519d77/datasketch-1.6.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "882f248057ca4d22bd3ffb9bb3e9f4c208240a27e4d0ca9687d6d1d896aeec2a",
                "md5": "4dcf9a37a1fd3126a4c863d45a51d875",
                "sha256": "ba2848cb74f23d6d3dd444cf24edcbc47b1c34a171b1803231793ed4d74d4fcf"
            },
            "downloads": -1,
            "filename": "datasketch-1.6.5.tar.gz",
            "has_sig": false,
            "md5_digest": "4dcf9a37a1fd3126a4c863d45a51d875",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 92598,
            "upload_time": "2024-06-04T00:44:21",
            "upload_time_iso_8601": "2024-06-04T00:44:21.230109Z",
            "url": "https://files.pythonhosted.org/packages/88/2f/248057ca4d22bd3ffb9bb3e9f4c208240a27e4d0ca9687d6d1d896aeec2a/datasketch-1.6.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-04 00:44:21",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ekzhu",
    "github_project": "datasketch",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": true,
    "lcname": "datasketch"
}
        
Elapsed time: 0.82437s