# Dataset Management Framework (Datumaro)
[](https://github.com/open-edge-platform/datumaro/actions/workflows/health_check.yml)
[](https://codecov.io/gh/open-edge-platform/datumaro)
[](https://pepy.tech/project/datumaro)
A framework and CLI tool to build, transform, and analyze datasets.
<!--lint disable fenced-code-flag-->
```
VOC dataset ---> Annotation tool
+ /
COCO dataset -----> Datumaro ---> dataset ------> Model training
+ \
CVAT annotations ---> Publication, statistics etc.
```
<!--lint enable fenced-code-flag-->
- [Getting started](https://open-edge-platform.github.io/datumaro/latest/docs/get-started/quick-start-guide)
- [Level Up](https://open-edge-platform.github.io/datumaro/latest/docs/level-up/basic_skills)
- [Features](#features)
- [User manual](https://open-edge-platform.github.io/datumaro/latest/docs/user-manual/how_to_use_datumaro)
- [Developer manual](https://open-edge-platform.github.io/datumaro/latest/docs/reference/datumaro_module)
- [Contributing](#contributing)
## Features
[(Back to top)](#dataset-management-framework-datumaro)
- Dataset reading, writing, conversion in any direction.
- [CIFAR-10/100](https://www.cs.toronto.edu/~kriz/cifar.html) (`classification`)
- [Cityscapes](https://www.cityscapes-dataset.com/)
- [COCO](http://cocodataset.org/#format-data) (`image_info`, `instances`, `person_keypoints`,
`captions`, `labels`, `panoptic`, `stuff`)
- [CVAT](https://opencv.github.io/cvat/docs/manual/advanced/xml_format/)
- [ImageNet](http://image-net.org/)
- [Kitti](http://www.cvlibs.net/datasets/kitti/index.php) (`segmentation`, `detection`,
`3D raw` / `velodyne points`)
- [LabelMe](http://labelme.csail.mit.edu/Release3.0)
- [LFW](http://vis-www.cs.umass.edu/lfw/) (`classification`, `person re-identification`,
`landmarks`)
- [MNIST](http://yann.lecun.com/exdb/mnist/) (`classification`)
- [Open Images](https://storage.googleapis.com/openimages/web/download.html)
- [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/htmldoc/index.html)
(`classification`, `detection`, `segmentation`, `action_classification`, `person_layout`)
- [TF Detection API](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/using_your_own_dataset.md)
(`bboxes`, `masks`)
- [YOLO](https://github.com/AlexeyAB/darknet#how-to-train-pascal-voc-data) (`bboxes`)
Other formats and documentation for them can be found [here](https://open-edge-platform.github.io/datumaro/latest/docs/data-formats/formats).
- Dataset building
- Merging multiple datasets into one
- Dataset filtering by a custom criteria:
- remove polygons of a certain class
- remove images without annotations of a specific class
- remove `occluded` annotations from images
- keep only vertically-oriented images
- remove small area bounding boxes from annotations
- Annotation conversions, for instance:
- polygons to instance masks and vice-versa
- apply a custom colormap for mask annotations
- rename or remove dataset labels
- Splitting a dataset into multiple subsets like `train`, `val`, and `test`:
- random split
- task-specific splits based on annotations,
which keep initial label and attribute distributions
- for classification task, based on labels
- for detection task, based on bboxes
- for re-identification task, based on labels,
avoiding having same IDs in training and test splits
- Sampling a dataset
- analyzes inference result from the given dataset
and selects the ‘best’ and the ‘least amount of’ samples for annotation.
- Select the sample that best suits model training.
- sampling with Entropy based algorithm
- Dataset quality checking
- Simple checking for errors
- Comparison with model inference
- Merging and comparison of multiple datasets
- Annotation validation based on the task type(classification, etc)
- Dataset comparison
- Dataset statistics (image mean and std, annotation statistics)
- Model integration
- Inference (OpenVINO, Caffe, PyTorch, TensorFlow, MxNet, etc.)
- Explainable AI ([RISE algorithm](https://arxiv.org/abs/1806.07421))
- RISE for classification
- RISE for object detection
> Check
[the design document](https://open-edge-platform.github.io/datumaro/latest/docs/explanation/architecture)
for a full list of features.
> Check
[the user manual](https://open-edge-platform.github.io/datumaro/latest/docs/user-manual/how_to_use_datumaro)
for usage instructions.
## Contributing
[(Back to top)](#dataset-management-framework-datumaro)
Feel free to
[open an Issue](https://github.com/open-edge-platform/datumaro/issues/new), if you
think something needs to be changed. You are welcome to participate in
development, instructions are available in our
[contribution guide](https://github.com/open-edge-platform/datumaro/blob/develop/contributing.md).
## Telemetry data collection note
The [OpenVINO™ telemetry library](https://github.com/open-edge-platform/telemetry/)
is used to collect basic information about Datumaro usage.
To enable/disable telemetry data collection please see the
[guide](https://open-edge-platform.github.io/datumaro/latest/docs/user-manual/how_to_control_tm_data_collection).
Raw data
{
"_id": null,
"home_page": "https://github.com/open-edge-platform/datumaro",
"name": "datumaro",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": null,
"author": "Intel",
"author_email": "emily.chun@intel.com",
"download_url": "https://files.pythonhosted.org/packages/08/3d/7e45f85acd8abadf030ad7caf373f91faca568ff1b47289f0be17edd18f9/datumaro-1.11.0.tar.gz",
"platform": null,
"description": "# Dataset Management Framework (Datumaro)\n\n[](https://github.com/open-edge-platform/datumaro/actions/workflows/health_check.yml)\n[](https://codecov.io/gh/open-edge-platform/datumaro)\n[](https://pepy.tech/project/datumaro)\n\nA framework and CLI tool to build, transform, and analyze datasets.\n\n<!--lint disable fenced-code-flag-->\n```\nVOC dataset ---> Annotation tool\n + /\nCOCO dataset -----> Datumaro ---> dataset ------> Model training\n + \\\nCVAT annotations ---> Publication, statistics etc.\n```\n<!--lint enable fenced-code-flag-->\n\n- [Getting started](https://open-edge-platform.github.io/datumaro/latest/docs/get-started/quick-start-guide)\n- [Level Up](https://open-edge-platform.github.io/datumaro/latest/docs/level-up/basic_skills)\n- [Features](#features)\n- [User manual](https://open-edge-platform.github.io/datumaro/latest/docs/user-manual/how_to_use_datumaro)\n- [Developer manual](https://open-edge-platform.github.io/datumaro/latest/docs/reference/datumaro_module)\n- [Contributing](#contributing)\n\n## Features\n\n[(Back to top)](#dataset-management-framework-datumaro)\n\n- Dataset reading, writing, conversion in any direction.\n - [CIFAR-10/100](https://www.cs.toronto.edu/~kriz/cifar.html) (`classification`)\n - [Cityscapes](https://www.cityscapes-dataset.com/)\n - [COCO](http://cocodataset.org/#format-data) (`image_info`, `instances`, `person_keypoints`,\n `captions`, `labels`, `panoptic`, `stuff`)\n - [CVAT](https://opencv.github.io/cvat/docs/manual/advanced/xml_format/)\n - [ImageNet](http://image-net.org/)\n - [Kitti](http://www.cvlibs.net/datasets/kitti/index.php) (`segmentation`, `detection`,\n `3D raw` / `velodyne points`)\n - [LabelMe](http://labelme.csail.mit.edu/Release3.0)\n - [LFW](http://vis-www.cs.umass.edu/lfw/) (`classification`, `person re-identification`,\n `landmarks`)\n - [MNIST](http://yann.lecun.com/exdb/mnist/) (`classification`)\n - [Open Images](https://storage.googleapis.com/openimages/web/download.html)\n - [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/htmldoc/index.html)\n (`classification`, `detection`, `segmentation`, `action_classification`, `person_layout`)\n - [TF Detection API](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/using_your_own_dataset.md)\n (`bboxes`, `masks`)\n - [YOLO](https://github.com/AlexeyAB/darknet#how-to-train-pascal-voc-data) (`bboxes`)\n\n Other formats and documentation for them can be found [here](https://open-edge-platform.github.io/datumaro/latest/docs/data-formats/formats).\n- Dataset building\n - Merging multiple datasets into one\n - Dataset filtering by a custom criteria:\n - remove polygons of a certain class\n - remove images without annotations of a specific class\n - remove `occluded` annotations from images\n - keep only vertically-oriented images\n - remove small area bounding boxes from annotations\n - Annotation conversions, for instance:\n - polygons to instance masks and vice-versa\n - apply a custom colormap for mask annotations\n - rename or remove dataset labels\n - Splitting a dataset into multiple subsets like `train`, `val`, and `test`:\n - random split\n - task-specific splits based on annotations,\n which keep initial label and attribute distributions\n - for classification task, based on labels\n - for detection task, based on bboxes\n - for re-identification task, based on labels,\n avoiding having same IDs in training and test splits\n - Sampling a dataset\n - analyzes inference result from the given dataset\n and selects the \u2018best\u2019 and the \u2018least amount of\u2019 samples for annotation.\n - Select the sample that best suits model training.\n - sampling with Entropy based algorithm\n- Dataset quality checking\n - Simple checking for errors\n - Comparison with model inference\n - Merging and comparison of multiple datasets\n - Annotation validation based on the task type(classification, etc)\n- Dataset comparison\n- Dataset statistics (image mean and std, annotation statistics)\n- Model integration\n - Inference (OpenVINO, Caffe, PyTorch, TensorFlow, MxNet, etc.)\n - Explainable AI ([RISE algorithm](https://arxiv.org/abs/1806.07421))\n - RISE for classification\n - RISE for object detection\n\n> Check\n [the design document](https://open-edge-platform.github.io/datumaro/latest/docs/explanation/architecture)\n for a full list of features.\n> Check\n [the user manual](https://open-edge-platform.github.io/datumaro/latest/docs/user-manual/how_to_use_datumaro)\n for usage instructions.\n\n## Contributing\n\n[(Back to top)](#dataset-management-framework-datumaro)\n\nFeel free to\n[open an Issue](https://github.com/open-edge-platform/datumaro/issues/new), if you\nthink something needs to be changed. You are welcome to participate in\ndevelopment, instructions are available in our\n[contribution guide](https://github.com/open-edge-platform/datumaro/blob/develop/contributing.md).\n\n## Telemetry data collection note\n\nThe [OpenVINO\u2122 telemetry library](https://github.com/open-edge-platform/telemetry/)\nis used to collect basic information about Datumaro usage.\n\nTo enable/disable telemetry data collection please see the\n[guide](https://open-edge-platform.github.io/datumaro/latest/docs/user-manual/how_to_control_tm_data_collection).\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Dataset Management Framework (Datumaro)",
"version": "1.11.0",
"project_urls": {
"Homepage": "https://github.com/open-edge-platform/datumaro"
},
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "8b9196de2965258104ebc710aad5477117bc66d22e417defc0b6b596c77a83df",
"md5": "0159afc46e8b20897882ba6eb9d600a8",
"sha256": "991f4ce10d22b51ee6a2b6281fa4ac16f231345d99fe23c1a02e4a61ae0e1aad"
},
"downloads": -1,
"filename": "datumaro-1.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "0159afc46e8b20897882ba6eb9d600a8",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 1168395,
"upload_time": "2025-07-18T11:27:37",
"upload_time_iso_8601": "2025-07-18T11:27:37.554173Z",
"url": "https://files.pythonhosted.org/packages/8b/91/96de2965258104ebc710aad5477117bc66d22e417defc0b6b596c77a83df/datumaro-1.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "9d8bdf4ffa024b8c5948a14f597c7034026bd89f464cb679c56f9e0cb2732481",
"md5": "7ac3b94a554bc8183893d97a2184b3f2",
"sha256": "a164e409d2bb7ed2faade2582d72b4e7d4be5a23892f970b5c92d8203d1bf81f"
},
"downloads": -1,
"filename": "datumaro-1.11.0-cp310-cp310-musllinux_1_1_x86_64.whl",
"has_sig": false,
"md5_digest": "7ac3b94a554bc8183893d97a2184b3f2",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 1682027,
"upload_time": "2025-07-18T11:27:39",
"upload_time_iso_8601": "2025-07-18T11:27:39.859762Z",
"url": "https://files.pythonhosted.org/packages/9d/8b/df4ffa024b8c5948a14f597c7034026bd89f464cb679c56f9e0cb2732481/datumaro-1.11.0-cp310-cp310-musllinux_1_1_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "bd289e3e4983ea5c2ec0e765f4a7d7b8da8847e77dfbc282c588dba8773be95d",
"md5": "d993176d58556d696335a5e988ab9399",
"sha256": "06c73e76b625b3d19c1b52e5e377189d281079dc7be1b1fd773cd22f25ce5259"
},
"downloads": -1,
"filename": "datumaro-1.11.0-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "d993176d58556d696335a5e988ab9399",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 981304,
"upload_time": "2025-07-18T11:27:41",
"upload_time_iso_8601": "2025-07-18T11:27:41.737534Z",
"url": "https://files.pythonhosted.org/packages/bd/28/9e3e4983ea5c2ec0e765f4a7d7b8da8847e77dfbc282c588dba8773be95d/datumaro-1.11.0-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "68cf28debd3f5711005ed6dcb830551d9deb90228f2a29611cd52a9dd9d170cb",
"md5": "af2924b1bb2a36f604a586b984ed84af",
"sha256": "0a891f7086186840f78e0050bc3561003a53864b4ec403a35965c147b7ee416b"
},
"downloads": -1,
"filename": "datumaro-1.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "af2924b1bb2a36f604a586b984ed84af",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 1169390,
"upload_time": "2025-07-18T11:27:43",
"upload_time_iso_8601": "2025-07-18T11:27:43.556956Z",
"url": "https://files.pythonhosted.org/packages/68/cf/28debd3f5711005ed6dcb830551d9deb90228f2a29611cd52a9dd9d170cb/datumaro-1.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "5264c5c31f8a94bf35994896f947fb5d4e21e60c8694a20166aa4bddfabb0fa1",
"md5": "a60a0b80f7b48f90f56c00a32f8cd974",
"sha256": "f6c5d7cbc44179cd0056c608e34d0052bd021edcc5115857e003fd469e970d7f"
},
"downloads": -1,
"filename": "datumaro-1.11.0-cp311-cp311-musllinux_1_1_x86_64.whl",
"has_sig": false,
"md5_digest": "a60a0b80f7b48f90f56c00a32f8cd974",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 1682894,
"upload_time": "2025-07-18T11:27:47",
"upload_time_iso_8601": "2025-07-18T11:27:47.179952Z",
"url": "https://files.pythonhosted.org/packages/52/64/c5c31f8a94bf35994896f947fb5d4e21e60c8694a20166aa4bddfabb0fa1/datumaro-1.11.0-cp311-cp311-musllinux_1_1_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "eb43eb798ea8aa2332385b0a551782c29297839e65f8510c052d10b7c7581378",
"md5": "917f9a963ccd4b6c1b25ab8f5e0f8e29",
"sha256": "d6e6dffcaadf134fb8b1e1553e64b2411c901f78f86e87ec2be26bafbf49c155"
},
"downloads": -1,
"filename": "datumaro-1.11.0-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "917f9a963ccd4b6c1b25ab8f5e0f8e29",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 982076,
"upload_time": "2025-07-18T11:27:48",
"upload_time_iso_8601": "2025-07-18T11:27:48.576584Z",
"url": "https://files.pythonhosted.org/packages/eb/43/eb798ea8aa2332385b0a551782c29297839e65f8510c052d10b7c7581378/datumaro-1.11.0-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ab42b5a5e099eeb3fd57f6e586038cafc4b289fd8c9853d08cc17547cfef9794",
"md5": "5e22aadc9ef5c65062d8dbc7aeda4301",
"sha256": "07f0ceacbcecc94e0b0351f00ded13a3f5b0aa80e9208ea11fa3eea79baf7222"
},
"downloads": -1,
"filename": "datumaro-1.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "5e22aadc9ef5c65062d8dbc7aeda4301",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 1169597,
"upload_time": "2025-07-18T11:27:50",
"upload_time_iso_8601": "2025-07-18T11:27:50.104924Z",
"url": "https://files.pythonhosted.org/packages/ab/42/b5a5e099eeb3fd57f6e586038cafc4b289fd8c9853d08cc17547cfef9794/datumaro-1.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "87b83664c3a3d6ecabdf51e7f34e8179d7daedf1bf88d993f62ad335e27c406d",
"md5": "7b8b22c3469f26fb7b35f93a7f355c24",
"sha256": "e0880a1f0646c9e459da6de60c54dd881b4f143737ef41f7b89d611700b544fa"
},
"downloads": -1,
"filename": "datumaro-1.11.0-cp312-cp312-musllinux_1_1_x86_64.whl",
"has_sig": false,
"md5_digest": "7b8b22c3469f26fb7b35f93a7f355c24",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 1683795,
"upload_time": "2025-07-18T11:27:51",
"upload_time_iso_8601": "2025-07-18T11:27:51.742536Z",
"url": "https://files.pythonhosted.org/packages/87/b8/3664c3a3d6ecabdf51e7f34e8179d7daedf1bf88d993f62ad335e27c406d/datumaro-1.11.0-cp312-cp312-musllinux_1_1_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "1f9e13b32209c0307874506da80338fda5871cd013d2e65424ae7498a2646c01",
"md5": "898021a592b3d74f1681be0177c3dd37",
"sha256": "167be5e001d572913409d41f9334b87120dadce23b65942d5a6ce6fef9d8fbf6"
},
"downloads": -1,
"filename": "datumaro-1.11.0-cp312-cp312-win_amd64.whl",
"has_sig": false,
"md5_digest": "898021a592b3d74f1681be0177c3dd37",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 982592,
"upload_time": "2025-07-18T11:27:53",
"upload_time_iso_8601": "2025-07-18T11:27:53.203522Z",
"url": "https://files.pythonhosted.org/packages/1f/9e/13b32209c0307874506da80338fda5871cd013d2e65424ae7498a2646c01/datumaro-1.11.0-cp312-cp312-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "cd346f2a4e8ac630d2f3ed4677b4f3a0ecdc8d2bfe54d774a7f86800a61526a3",
"md5": "957ef3e12744d8e64df7a4fa84b37b2f",
"sha256": "8340388e7950700a4052cf1f1cc748aa76c46f19cceb690cccbbac7dc6fc600a"
},
"downloads": -1,
"filename": "datumaro-1.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "957ef3e12744d8e64df7a4fa84b37b2f",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 1169171,
"upload_time": "2025-07-18T11:27:54",
"upload_time_iso_8601": "2025-07-18T11:27:54.673678Z",
"url": "https://files.pythonhosted.org/packages/cd/34/6f2a4e8ac630d2f3ed4677b4f3a0ecdc8d2bfe54d774a7f86800a61526a3/datumaro-1.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ff4a95699dc49d1aed7e73976e4b5913688d0621f9927a39077030525a4735db",
"md5": "ea1cc6e78b57f2b205e4c2e6695ed296",
"sha256": "20bf73f78a3f01011483b52822c744797359630f6d5a5185940ab7ba0c8d16db"
},
"downloads": -1,
"filename": "datumaro-1.11.0-cp39-cp39-musllinux_1_1_x86_64.whl",
"has_sig": false,
"md5_digest": "ea1cc6e78b57f2b205e4c2e6695ed296",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 1683235,
"upload_time": "2025-07-18T11:27:56",
"upload_time_iso_8601": "2025-07-18T11:27:56.138708Z",
"url": "https://files.pythonhosted.org/packages/ff/4a/95699dc49d1aed7e73976e4b5913688d0621f9927a39077030525a4735db/datumaro-1.11.0-cp39-cp39-musllinux_1_1_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "23d55d6b14da218e4eea125ecd46ebff9479965fddabf7da3e95fed02fac6314",
"md5": "1b5699c387e1c6240fc00bb14485512b",
"sha256": "a588668222703e7e03e463d5f1ac0d8a06582534c67e45e3b384c95feaa77f96"
},
"downloads": -1,
"filename": "datumaro-1.11.0-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "1b5699c387e1c6240fc00bb14485512b",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 981679,
"upload_time": "2025-07-18T11:27:57",
"upload_time_iso_8601": "2025-07-18T11:27:57.903226Z",
"url": "https://files.pythonhosted.org/packages/23/d5/5d6b14da218e4eea125ecd46ebff9479965fddabf7da3e95fed02fac6314/datumaro-1.11.0-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "083d7e45f85acd8abadf030ad7caf373f91faca568ff1b47289f0be17edd18f9",
"md5": "34e46d4809cd69410e19d6549c7c604f",
"sha256": "376ab115b1552a6519bbfea840f1af6f0c85bfb8ed562f48d39b5d2ade55d20b"
},
"downloads": -1,
"filename": "datumaro-1.11.0.tar.gz",
"has_sig": false,
"md5_digest": "34e46d4809cd69410e19d6549c7c604f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 567511,
"upload_time": "2025-07-18T11:27:59",
"upload_time_iso_8601": "2025-07-18T11:27:59.444233Z",
"url": "https://files.pythonhosted.org/packages/08/3d/7e45f85acd8abadf030ad7caf373f91faca568ff1b47289f0be17edd18f9/datumaro-1.11.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-18 11:27:59",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "open-edge-platform",
"github_project": "datumaro",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"tox": true,
"lcname": "datumaro"
}