datumaro-headless


Namedatumaro-headless JSON
Version 1.2.0 PyPI version JSON
download
home_pagehttps://github.com/openvinotoolkit/datumaro
SummaryDataset Management Framework (Datumaro)
upload_time2023-05-24 20:17:12
maintainer
docs_urlNone
authorIntel
requires_python>=3.7
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Dataset Management Framework (Datumaro)

[![Build status](https://github.com/openvinotoolkit/datumaro/actions/workflows/health_check.yml/badge.svg)](https://github.com/openvinotoolkit/datumaro/actions/workflows/health_check.yml)
[![codecov](https://codecov.io/gh/openvinotoolkit/datumaro/branch/develop/graph/badge.svg?token=FG25VU096Q)](https://codecov.io/gh/openvinotoolkit/datumaro)

A framework and CLI tool to build, transform, and analyze datasets.

<!--lint disable fenced-code-flag-->
```
VOC dataset                                  ---> Annotation tool
     +                                     /
COCO dataset -----> Datumaro ---> dataset ------> Model training
     +                                     \
CVAT annotations                             ---> Publication, statistics etc.
```
<!--lint enable fenced-code-flag-->

- [Getting started](https://openvinotoolkit.github.io/datumaro/docs/getting_started)
- [Features](#features)
- [User manual](https://openvinotoolkit.github.io/datumaro/docs/user-manual)
- [Developer manual](https://openvinotoolkit.github.io/datumaro/api)
- [Contributing](#contributing)

## Features

[(Back to top)](#dataset-management-framework-datumaro)

- Dataset reading, writing, conversion in any direction.
  - [CIFAR-10/100](https://www.cs.toronto.edu/~kriz/cifar.html) (`classification`)
  - [Cityscapes](https://www.cityscapes-dataset.com/)
  - [COCO](http://cocodataset.org/#format-data) (`image_info`, `instances`, `person_keypoints`,
    `captions`, `labels`, `panoptic`, `stuff`)
  - [CVAT](https://openvinotoolkit.github.io/cvat/docs/manual/advanced/xml_format)
  - [ImageNet](http://image-net.org/)
  - [Kitti](http://www.cvlibs.net/datasets/kitti/index.php) (`segmentation`, `detection`,
    `3D raw` / `velodyne points`)
  - [LabelMe](http://labelme.csail.mit.edu/Release3.0)
  - [LFW](http://vis-www.cs.umass.edu/lfw/) (`classification`, `person re-identification`,
    `landmarks`)
  - [MNIST](http://yann.lecun.com/exdb/mnist/) (`classification`)
  - [Open Images](https://storage.googleapis.com/openimages/web/download.html)
  - [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/htmldoc/index.html)
    (`classification`, `detection`, `segmentation`, `action_classification`, `person_layout`)
  - [TF Detection API](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/using_your_own_dataset.md)
    (`bboxes`, `masks`)
  - [YOLO](https://github.com/AlexeyAB/darknet#how-to-train-pascal-voc-data) (`bboxes`)

  Other formats and documentation for them can be found [here](https://openvinotoolkit.github.io/datumaro/docs/user-manual/supported_formats).
- Dataset building
  - Merging multiple datasets into one
  - Dataset filtering by a custom criteria:
    - remove polygons of a certain class
    - remove images without annotations of a specific class
    - remove `occluded` annotations from images
    - keep only vertically-oriented images
    - remove small area bounding boxes from annotations
  - Annotation conversions, for instance:
    - polygons to instance masks and vice-versa
    - apply a custom colormap for mask annotations
    - rename or remove dataset labels
  - Splitting a dataset into multiple subsets like `train`, `val`, and `test`:
    - random split
    - task-specific splits based on annotations,
      which keep initial label and attribute distributions
      - for classification task, based on labels
      - for detection task, based on bboxes
      - for re-identification task, based on labels,
        avoiding having same IDs in training and test splits
  - Sampling a dataset
    - analyzes inference result from the given dataset
      and selects the ‘best’ and the ‘least amount of’ samples for annotation.
    - Select the sample that best suits model training.
      - sampling with Entropy based algorithm
- Dataset quality checking
  - Simple checking for errors
  - Comparison with model inference
  - Merging and comparison of multiple datasets
  - Annotation validation based on the task type(classification, etc)
- Dataset comparison
- Dataset statistics (image mean and std, annotation statistics)
- Model integration
  - Inference (OpenVINO, Caffe, PyTorch, TensorFlow, MxNet, etc.)
  - Explainable AI ([RISE algorithm](https://arxiv.org/abs/1806.07421))
    - RISE for classification
    - RISE for object detection

> Check
  [the design document](https://openvinotoolkit.github.io/datumaro/docs/design)
  for a full list of features.
> Check
  [the user manual](https://openvinotoolkit.github.io/datumaro/docs/user-manual)
  for usage instructions.

## Contributing

[(Back to top)](#dataset-management-framework-datumaro)

Feel free to
[open an Issue](https://github.com/openvinotoolkit/datumaro/issues/new), if you
think something needs to be changed. You are welcome to participate in
development, instructions are available in our
[contribution guide](https://openvinotoolkit.github.io/datumaro/docs/contributing).

## Telemetry data collection note

The [OpenVINO™ telemetry library](https://github.com/openvinotoolkit/telemetry/)
is used to collect basic information about Datumaro usage.

To enable/disable telemetry data collection please see the
[guide](https://openvinotoolkit.github.io/datumaro/docs/user-manual/how_to_control_tm_data_collection/).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/openvinotoolkit/datumaro",
    "name": "datumaro-headless",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "",
    "author": "Intel",
    "author_email": "emily.chun@intel.com",
    "download_url": "https://files.pythonhosted.org/packages/6f/44/3600eff74e9b03f507cd1399067cdacd051cc6f0c174f36dedfacc76dd13/datumaro-headless-1.2.0.tar.gz",
    "platform": null,
    "description": "# Dataset Management Framework (Datumaro)\n\n[![Build status](https://github.com/openvinotoolkit/datumaro/actions/workflows/health_check.yml/badge.svg)](https://github.com/openvinotoolkit/datumaro/actions/workflows/health_check.yml)\n[![codecov](https://codecov.io/gh/openvinotoolkit/datumaro/branch/develop/graph/badge.svg?token=FG25VU096Q)](https://codecov.io/gh/openvinotoolkit/datumaro)\n\nA framework and CLI tool to build, transform, and analyze datasets.\n\n<!--lint disable fenced-code-flag-->\n```\nVOC dataset                                  ---> Annotation tool\n     +                                     /\nCOCO dataset -----> Datumaro ---> dataset ------> Model training\n     +                                     \\\nCVAT annotations                             ---> Publication, statistics etc.\n```\n<!--lint enable fenced-code-flag-->\n\n- [Getting started](https://openvinotoolkit.github.io/datumaro/docs/getting_started)\n- [Features](#features)\n- [User manual](https://openvinotoolkit.github.io/datumaro/docs/user-manual)\n- [Developer manual](https://openvinotoolkit.github.io/datumaro/api)\n- [Contributing](#contributing)\n\n## Features\n\n[(Back to top)](#dataset-management-framework-datumaro)\n\n- Dataset reading, writing, conversion in any direction.\n  - [CIFAR-10/100](https://www.cs.toronto.edu/~kriz/cifar.html) (`classification`)\n  - [Cityscapes](https://www.cityscapes-dataset.com/)\n  - [COCO](http://cocodataset.org/#format-data) (`image_info`, `instances`, `person_keypoints`,\n    `captions`, `labels`, `panoptic`, `stuff`)\n  - [CVAT](https://openvinotoolkit.github.io/cvat/docs/manual/advanced/xml_format)\n  - [ImageNet](http://image-net.org/)\n  - [Kitti](http://www.cvlibs.net/datasets/kitti/index.php) (`segmentation`, `detection`,\n    `3D raw` / `velodyne points`)\n  - [LabelMe](http://labelme.csail.mit.edu/Release3.0)\n  - [LFW](http://vis-www.cs.umass.edu/lfw/) (`classification`, `person re-identification`,\n    `landmarks`)\n  - [MNIST](http://yann.lecun.com/exdb/mnist/) (`classification`)\n  - [Open Images](https://storage.googleapis.com/openimages/web/download.html)\n  - [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/htmldoc/index.html)\n    (`classification`, `detection`, `segmentation`, `action_classification`, `person_layout`)\n  - [TF Detection API](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/using_your_own_dataset.md)\n    (`bboxes`, `masks`)\n  - [YOLO](https://github.com/AlexeyAB/darknet#how-to-train-pascal-voc-data) (`bboxes`)\n\n  Other formats and documentation for them can be found [here](https://openvinotoolkit.github.io/datumaro/docs/user-manual/supported_formats).\n- Dataset building\n  - Merging multiple datasets into one\n  - Dataset filtering by a custom criteria:\n    - remove polygons of a certain class\n    - remove images without annotations of a specific class\n    - remove `occluded` annotations from images\n    - keep only vertically-oriented images\n    - remove small area bounding boxes from annotations\n  - Annotation conversions, for instance:\n    - polygons to instance masks and vice-versa\n    - apply a custom colormap for mask annotations\n    - rename or remove dataset labels\n  - Splitting a dataset into multiple subsets like `train`, `val`, and `test`:\n    - random split\n    - task-specific splits based on annotations,\n      which keep initial label and attribute distributions\n      - for classification task, based on labels\n      - for detection task, based on bboxes\n      - for re-identification task, based on labels,\n        avoiding having same IDs in training and test splits\n  - Sampling a dataset\n    - analyzes inference result from the given dataset\n      and selects the \u2018best\u2019 and the \u2018least amount of\u2019 samples for annotation.\n    - Select the sample that best suits model training.\n      - sampling with Entropy based algorithm\n- Dataset quality checking\n  - Simple checking for errors\n  - Comparison with model inference\n  - Merging and comparison of multiple datasets\n  - Annotation validation based on the task type(classification, etc)\n- Dataset comparison\n- Dataset statistics (image mean and std, annotation statistics)\n- Model integration\n  - Inference (OpenVINO, Caffe, PyTorch, TensorFlow, MxNet, etc.)\n  - Explainable AI ([RISE algorithm](https://arxiv.org/abs/1806.07421))\n    - RISE for classification\n    - RISE for object detection\n\n> Check\n  [the design document](https://openvinotoolkit.github.io/datumaro/docs/design)\n  for a full list of features.\n> Check\n  [the user manual](https://openvinotoolkit.github.io/datumaro/docs/user-manual)\n  for usage instructions.\n\n## Contributing\n\n[(Back to top)](#dataset-management-framework-datumaro)\n\nFeel free to\n[open an Issue](https://github.com/openvinotoolkit/datumaro/issues/new), if you\nthink something needs to be changed. You are welcome to participate in\ndevelopment, instructions are available in our\n[contribution guide](https://openvinotoolkit.github.io/datumaro/docs/contributing).\n\n## Telemetry data collection note\n\nThe [OpenVINO\u2122 telemetry library](https://github.com/openvinotoolkit/telemetry/)\nis used to collect basic information about Datumaro usage.\n\nTo enable/disable telemetry data collection please see the\n[guide](https://openvinotoolkit.github.io/datumaro/docs/user-manual/how_to_control_tm_data_collection/).\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Dataset Management Framework (Datumaro)",
    "version": "1.2.0",
    "project_urls": {
        "Homepage": "https://github.com/openvinotoolkit/datumaro"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6f443600eff74e9b03f507cd1399067cdacd051cc6f0c174f36dedfacc76dd13",
                "md5": "f19bc344156f75d4f89ca30d8a4e63f2",
                "sha256": "7f2af4791049144e3420ffd730c26c52bb320e861ef9fe577ced8ea06936fc99"
            },
            "downloads": -1,
            "filename": "datumaro-headless-1.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "f19bc344156f75d4f89ca30d8a4e63f2",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 440974,
            "upload_time": "2023-05-24T20:17:12",
            "upload_time_iso_8601": "2023-05-24T20:17:12.113156Z",
            "url": "https://files.pythonhosted.org/packages/6f/44/3600eff74e9b03f507cd1399067cdacd051cc6f0c174f36dedfacc76dd13/datumaro-headless-1.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-05-24 20:17:12",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "openvinotoolkit",
    "github_project": "datumaro",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "tox": true,
    "lcname": "datumaro-headless"
}
        
Elapsed time: 2.30413s