dbnd-mlflow


Namedbnd-mlflow JSON
Version 1.0.27.2 PyPI version JSON
download
home_pagehttps://github.com/databand-ai/dbnd
SummaryMachine Learning Orchestration
upload_time2024-10-31 16:10:44
maintainerEvgeny Shulman
docs_urlNone
authorEvgeny Shulman
requires_pythonNone
licenseNone
keywords orchestration data machinelearning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Overview

The `dbnd-mlflow` plugin allows storing [mlflow](https://github.com/mlflow/mlflow) metrics to DBND tracker together with duplicating them to the mlflow store.

# Install

```bash
pip install dbnd-mlflow
# or
pip install databand[mlflow]
```

# Config

```ini
[core]
# Databand store url should be defined
databand_url=http://localhost:8080

[mlflow_tracking]
# Enable tracking to Databand store
databand_tracking=True

# Optionally, define a URI for mlflow store,
# mlflow.get_tracking_uri() is used by default
; duplicate_tracking_to=http://mlflow-store/
```

# Run example

You might need to install examples at first `pip install dbnd-examples`.

```bash
dbnd run dbnd_examples.tracking.tracking_mlflow.task_with_mflow

# or set configs manually
dbnd run dbnd_examples.tracking.tracking_mlflow.task_with_mflow --set-config mlflow_tracking.databand_tracking=True
```

# Explanation

<details><summary>mlflow_example code</summary>
<p>

```python
from dbnd import task
from mlflow import start_run, end_run
from mlflow import log_metric, log_param

@task
def mlflow_example():
    start_run()
    # params
    log_param("param1", randint(0, 100))
    log_param("param2", randint(0, 100))
    # metrics
    log_metric("foo1", random())
    log_metric("foo2", random())
    end_run()
```

</p>
</details>

## Execution flow:

1. Run `dbnd run mlflow_example --set-config mlflow_tracking.databand_tracking=True`
2. dbnd creates a new dbnd context
3. `dbnd_on_pre_init_context` hook from `dbnd_mlflow` is triggered
    - a new uri is computed to be used by mlflow, e.g.:
        - `dbnd://localhost:8080?duplicate_tracking_to=http%253A%252F%252Fmlflow-store%253A80%252F`
    - the new uri is set to be used with `mlflow.set_tracking_uri()`
4. `mlflow_example` task starts:
    1. `mlflow.start_run()`
        1. `mlflow` reads `entry_points` for each installed package and finds:
            - "dbnd = dbnd_mlflow.tracking_store:get_dbnd_store",
            - "dbnd+s = dbnd_mlflow.tracking_store:get_dbnd_store",
            - "databand = dbnd_mlflow.tracking_store:get_dbnd_store",
            - "databand+s = dbnd_mlflow.tracking_store:get_dbnd_store",
        2. `mlflow` creates `TrackingStoreClient` using the new uri
        3. uri schema instructs to use `dbnd_mlflow.tracking_store:get_dbnd_store`
            - `get_dbnd_store` creates dbnd `TrackingAPIClient`
            - `get_dbnd_store` creates mlflow tracking store to duplicate tracking to
            - `get_dbnd_store` returns `DatabandStore` instance
    2. `log_param()`/`log_metric()`
        - calls to `DatabandStore`
            - calls to `TrackingAPIClient`
            - calls to mlflow tracking store to duplicate tracking to
    3. `mlflow.end_run()`
5. `mlflow_example` ends
6. `dbnd_on_exit_context` hook from `dbnd_mlflow` is triggered
    - restore original mlflow tracking uri

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/databand-ai/dbnd",
    "name": "dbnd-mlflow",
    "maintainer": "Evgeny Shulman",
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": "evgeny.shulman@databand.ai",
    "keywords": "orchestration, data, machinelearning",
    "author": "Evgeny Shulman",
    "author_email": "evgeny.shulman@databand.ai",
    "download_url": "https://files.pythonhosted.org/packages/78/99/361127216161efa6793d3dc85ebc26b5ef6d025db61998af629ce01bf3ea/dbnd_mlflow-1.0.27.2.tar.gz",
    "platform": "any",
    "description": "# Overview\n\nThe `dbnd-mlflow` plugin allows storing [mlflow](https://github.com/mlflow/mlflow) metrics to DBND tracker together with duplicating them to the mlflow store.\n\n# Install\n\n```bash\npip install dbnd-mlflow\n# or\npip install databand[mlflow]\n```\n\n# Config\n\n```ini\n[core]\n# Databand store url should be defined\ndataband_url=http://localhost:8080\n\n[mlflow_tracking]\n# Enable tracking to Databand store\ndataband_tracking=True\n\n# Optionally, define a URI for mlflow store,\n# mlflow.get_tracking_uri() is used by default\n; duplicate_tracking_to=http://mlflow-store/\n```\n\n# Run example\n\nYou might need to install examples at first `pip install dbnd-examples`.\n\n```bash\ndbnd run dbnd_examples.tracking.tracking_mlflow.task_with_mflow\n\n# or set configs manually\ndbnd run dbnd_examples.tracking.tracking_mlflow.task_with_mflow --set-config mlflow_tracking.databand_tracking=True\n```\n\n# Explanation\n\n<details><summary>mlflow_example code</summary>\n<p>\n\n```python\nfrom dbnd import task\nfrom mlflow import start_run, end_run\nfrom mlflow import log_metric, log_param\n\n@task\ndef mlflow_example():\n    start_run()\n    # params\n    log_param(\"param1\", randint(0, 100))\n    log_param(\"param2\", randint(0, 100))\n    # metrics\n    log_metric(\"foo1\", random())\n    log_metric(\"foo2\", random())\n    end_run()\n```\n\n</p>\n</details>\n\n## Execution flow:\n\n1. Run `dbnd run mlflow_example --set-config mlflow_tracking.databand_tracking=True`\n2. dbnd creates a new dbnd context\n3. `dbnd_on_pre_init_context` hook from `dbnd_mlflow` is triggered\n    - a new uri is computed to be used by mlflow, e.g.:\n        - `dbnd://localhost:8080?duplicate_tracking_to=http%253A%252F%252Fmlflow-store%253A80%252F`\n    - the new uri is set to be used with `mlflow.set_tracking_uri()`\n4. `mlflow_example` task starts:\n    1. `mlflow.start_run()`\n        1. `mlflow` reads `entry_points` for each installed package and finds:\n            - \"dbnd = dbnd_mlflow.tracking_store:get_dbnd_store\",\n            - \"dbnd+s = dbnd_mlflow.tracking_store:get_dbnd_store\",\n            - \"databand = dbnd_mlflow.tracking_store:get_dbnd_store\",\n            - \"databand+s = dbnd_mlflow.tracking_store:get_dbnd_store\",\n        2. `mlflow` creates `TrackingStoreClient` using the new uri\n        3. uri schema instructs to use `dbnd_mlflow.tracking_store:get_dbnd_store`\n            - `get_dbnd_store` creates dbnd `TrackingAPIClient`\n            - `get_dbnd_store` creates mlflow tracking store to duplicate tracking to\n            - `get_dbnd_store` returns `DatabandStore` instance\n    2. `log_param()`/`log_metric()`\n        - calls to `DatabandStore`\n            - calls to `TrackingAPIClient`\n            - calls to mlflow tracking store to duplicate tracking to\n    3. `mlflow.end_run()`\n5. `mlflow_example` ends\n6. `dbnd_on_exit_context` hook from `dbnd_mlflow` is triggered\n    - restore original mlflow tracking uri\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Machine Learning Orchestration",
    "version": "1.0.27.2",
    "project_urls": {
        "Bug-Tracker": "https://github.com/databand-ai/dbnd/issues",
        "Documentation": "https://dbnd.readme.io/",
        "Homepage": "https://github.com/databand-ai/dbnd",
        "Source-Code": "https://github.com/databand-ai/dbnd"
    },
    "split_keywords": [
        "orchestration",
        " data",
        " machinelearning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "65aa3bb594e9af374599c155dd3917714bee7316a6bce33ba116d10849166d4f",
                "md5": "20a8b2bbb6fad592d896dca364e40ac7",
                "sha256": "45337eea55de76252537e445178e252f1dcee99fe4784ce66a2c8545a6cd7511"
            },
            "downloads": -1,
            "filename": "dbnd_mlflow-1.0.27.2-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "20a8b2bbb6fad592d896dca364e40ac7",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": null,
            "size": 12739,
            "upload_time": "2024-10-31T16:10:04",
            "upload_time_iso_8601": "2024-10-31T16:10:04.946039Z",
            "url": "https://files.pythonhosted.org/packages/65/aa/3bb594e9af374599c155dd3917714bee7316a6bce33ba116d10849166d4f/dbnd_mlflow-1.0.27.2-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7899361127216161efa6793d3dc85ebc26b5ef6d025db61998af629ce01bf3ea",
                "md5": "56727090fc4d697949acdbfc73ed0764",
                "sha256": "7f38481257de8c9a78a7432c4f312ade4ce317c640004120d67b6cf1fbe96ea7"
            },
            "downloads": -1,
            "filename": "dbnd_mlflow-1.0.27.2.tar.gz",
            "has_sig": false,
            "md5_digest": "56727090fc4d697949acdbfc73ed0764",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 12359,
            "upload_time": "2024-10-31T16:10:44",
            "upload_time_iso_8601": "2024-10-31T16:10:44.667675Z",
            "url": "https://files.pythonhosted.org/packages/78/99/361127216161efa6793d3dc85ebc26b5ef6d025db61998af629ce01bf3ea/dbnd_mlflow-1.0.27.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-31 16:10:44",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "databand-ai",
    "github_project": "dbnd",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "tox": true,
    "lcname": "dbnd-mlflow"
}
        
Elapsed time: 1.58855s