dcTMD


NamedcTMD JSON
Version 0.3.0 PyPI version JSON
download
home_pagehttps://github.com/moldyn/dcTMD
SummaryAnalyse targeted molecular dynamics data with dcTMD
upload_time2023-03-28 11:16:12
maintainer
docs_urlNone
authortaenzel, dieJaegerIn, braniii, floWneffetS
requires_python>=3.8
licenseMIT License
keywords enhanced sampling friction md analysis
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
    <img  style="width: 400px;" src="https://raw.githubusercontent.com/moldyn/dcTMD/main/docs/dctmd_logo.svg" />
  <p>
    <a href="https://github.com/wemake-services/wemake-python-styleguide" alt="wemake-python-styleguide">
        <img src="https://img.shields.io/badge/style-wemake-000000.svg" /></a>
    <a href="https://beartype.rtfd.io" alt="bear-ified">
        <img src="https://raw.githubusercontent.com/beartype/beartype-assets/main/badge/bear-ified.svg" /></a>
    <a href="https://moldyn.github.io/dcTMD" alt="Docs">
        <img src="https://img.shields.io/badge/mkdocs-Documentation-brightgreen" /></a>
    <a href="https://pypi.org/project/dcTMD" alt="PyPI">
        <img alt="PyPI" src="https://img.shields.io/pypi/v/dcTMD" /></a>
    <a href="https://anaconda.org/conda-forge/dcTMD" alt="conda version">
        <img src="https://img.shields.io/conda/vn/conda-forge/dcTMD" /></a>
    <a href="https://pepy.tech/project/dcTMD" alt="Downloads">
        <img src="https://pepy.tech/badge/dcTMD" /></a>
    <a href="https://github.com/moldyn/dcTMD/blob/main/LICENSE" alt="License">
        <img src="https://img.shields.io/github/license/moldyn/dcTMD" /></a>
    <a href="https://github.com/moldyn/dcTMD/actions/workflows/codeql.yml" alt="CodeQL">
        <img src="https://github.com/moldyn/dcTMD/actions/workflows/codeql.yml/badge.svg?branch=main" /></a>
    <a href="https://github.com/moldyn/dcTMD/actions/workflows/pytest.yml" alt="GitHub Workflow Status">
        <img src="https://img.shields.io/github/actions/workflow/status/moldyn/dcTMD/pytest.yml?branch=main"></a>
    <a href="https://codecov.io/gh/moldyn/dcTMD" >
        <img src="https://codecov.io/gh/moldyn/dcTMD/branch/main/graph/badge.svg?token=XMLP2VUU33"/></a>
  </p>

  <p>
    <a href="#features">Features</a> •
    <a href="#installation">Installation</a> •
    <a href="https://moldyn.github.io/dcTMD/getting_started/">Tutorials</a> •
    <a href="https://moldyn.github.io/dcTMD/">Docs</a>
  </p>
</div>


# dcTMD

This package aids in the analysis of dissipation-corrected targeted molecular dynamics (dcTMD) simulations. The method enforces rare unbinding events of ligands from proteins via a constraint pulling bias. Subsequently, free energy profiles and friction factors are estimated along the unbinding coordinate. For a methodological overview, see our [article](https://pubs.acs.org/doi/full/10.1021/acs.jctc.8b00835).

> S. Wolf, and G. Stock,  
> *Targeted molecular dynamics calculations of free energy profiles using a nonequilibrium friction correction.*,
> **J. Chem. Theory Comput.** 2018 14 (12), 6175-6182,  
> doi: [10.1021/acs.jctc.8b00835](https://pubs.acs.org/doi/10.1021/acs.jctc.8b00835)

This package will be published soon:

> V. Tänzel, M. Jäger, D. Nagel, and S. Wolf,  
> *Dissipation Corrected Targeted Molecular Dynamics*,  
> in preparation 2023

We kindly ask you to cite these articles in case you use this software package for published works.

## Features
- Intuitive usage via module and CI
- Sklearn-style API for fast integration into your Python workflow
- Supports Python 3.8-3.10
- Multitude of [publications](https://www.moldyn.uni-freiburg.de/publications.html) with dcTMD

## Implemented Key Functionalities
- Estimation of free energy profiles and friction factors along the unbinding coordinate of ligands as described by [Wolf and Stock 2018](https://pubs.acs.org/doi/full/10.1021/acs.jctc.8b00835).
- Analysis of separate unbinding pathways as described by [Wolf et al. 2022](https://arxiv.org/abs/2212.07154).

## Installation
The package will be available on PiPY and conda. Until then, install it via:
```bash
python3 -m pip install git+ssh://git@github.com/moldyn/dcTMD.git
```

## Usage
Check out the documentation for an overview over all modules as well as the tutorials.

## Roadmap

- [ ] New Features:
    - [ ] Gaussian error estimation
    - [ ] 2d distribution WorkSet plots
    - [x] Estimator plots: free energy, friction & both
    - [x] Normality plot
    - [x] Confidence intervals
    - [ ] Exponential estimator class
- [ ] Discuss gaussian kernel borders


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/moldyn/dcTMD",
    "name": "dcTMD",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "enhanced sampling,friction,MD analysis",
    "author": "taenzel, dieJaegerIn, braniii, floWneffetS",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/c3/50/b80ecae91dbbec6cf4204979769cad642f8dc3043187678d1a368784605b/dcTMD-0.3.0.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n    <img  style=\"width: 400px;\" src=\"https://raw.githubusercontent.com/moldyn/dcTMD/main/docs/dctmd_logo.svg\" />\n  <p>\n    <a href=\"https://github.com/wemake-services/wemake-python-styleguide\" alt=\"wemake-python-styleguide\">\n        <img src=\"https://img.shields.io/badge/style-wemake-000000.svg\" /></a>\n    <a href=\"https://beartype.rtfd.io\" alt=\"bear-ified\">\n        <img src=\"https://raw.githubusercontent.com/beartype/beartype-assets/main/badge/bear-ified.svg\" /></a>\n    <a href=\"https://moldyn.github.io/dcTMD\" alt=\"Docs\">\n        <img src=\"https://img.shields.io/badge/mkdocs-Documentation-brightgreen\" /></a>\n    <a href=\"https://pypi.org/project/dcTMD\" alt=\"PyPI\">\n        <img alt=\"PyPI\" src=\"https://img.shields.io/pypi/v/dcTMD\" /></a>\n    <a href=\"https://anaconda.org/conda-forge/dcTMD\" alt=\"conda version\">\n        <img src=\"https://img.shields.io/conda/vn/conda-forge/dcTMD\" /></a>\n    <a href=\"https://pepy.tech/project/dcTMD\" alt=\"Downloads\">\n        <img src=\"https://pepy.tech/badge/dcTMD\" /></a>\n    <a href=\"https://github.com/moldyn/dcTMD/blob/main/LICENSE\" alt=\"License\">\n        <img src=\"https://img.shields.io/github/license/moldyn/dcTMD\" /></a>\n    <a href=\"https://github.com/moldyn/dcTMD/actions/workflows/codeql.yml\" alt=\"CodeQL\">\n        <img src=\"https://github.com/moldyn/dcTMD/actions/workflows/codeql.yml/badge.svg?branch=main\" /></a>\n    <a href=\"https://github.com/moldyn/dcTMD/actions/workflows/pytest.yml\" alt=\"GitHub Workflow Status\">\n        <img src=\"https://img.shields.io/github/actions/workflow/status/moldyn/dcTMD/pytest.yml?branch=main\"></a>\n    <a href=\"https://codecov.io/gh/moldyn/dcTMD\" >\n        <img src=\"https://codecov.io/gh/moldyn/dcTMD/branch/main/graph/badge.svg?token=XMLP2VUU33\"/></a>\n  </p>\n\n  <p>\n    <a href=\"#features\">Features</a> \u2022\n    <a href=\"#installation\">Installation</a> \u2022\n    <a href=\"https://moldyn.github.io/dcTMD/getting_started/\">Tutorials</a> \u2022\n    <a href=\"https://moldyn.github.io/dcTMD/\">Docs</a>\n  </p>\n</div>\n\n\n# dcTMD\n\nThis package aids in the analysis of dissipation-corrected targeted molecular dynamics (dcTMD) simulations. The method enforces rare unbinding events of ligands from proteins via a constraint pulling bias. Subsequently, free energy profiles and friction factors are estimated along the unbinding coordinate. For a methodological overview, see our [article](https://pubs.acs.org/doi/full/10.1021/acs.jctc.8b00835).\n\n> S. Wolf, and G. Stock,  \n> *Targeted molecular dynamics calculations of free energy profiles using a nonequilibrium friction correction.*,\n> **J. Chem. Theory Comput.** 2018 14 (12), 6175-6182,  \n> doi: [10.1021/acs.jctc.8b00835](https://pubs.acs.org/doi/10.1021/acs.jctc.8b00835)\n\nThis package will be published soon:\n\n> V. T\u00e4nzel, M. J\u00e4ger, D. Nagel, and S. Wolf,  \n> *Dissipation Corrected Targeted Molecular Dynamics*,  \n> in preparation 2023\n\nWe kindly ask you to cite these articles in case you use this software package for published works.\n\n## Features\n- Intuitive usage via module and CI\n- Sklearn-style API for fast integration into your Python workflow\n- Supports Python 3.8-3.10\n- Multitude of [publications](https://www.moldyn.uni-freiburg.de/publications.html) with dcTMD\n\n## Implemented Key Functionalities\n- Estimation of free energy profiles and friction factors along the unbinding coordinate of ligands as described by [Wolf and Stock 2018](https://pubs.acs.org/doi/full/10.1021/acs.jctc.8b00835).\n- Analysis of separate unbinding pathways as described by [Wolf et al. 2022](https://arxiv.org/abs/2212.07154).\n\n## Installation\nThe package will be available on PiPY and conda. Until then, install it via:\n```bash\npython3 -m pip install git+ssh://git@github.com/moldyn/dcTMD.git\n```\n\n## Usage\nCheck out the documentation for an overview over all modules as well as the tutorials.\n\n## Roadmap\n\n- [ ] New Features:\n    - [ ] Gaussian error estimation\n    - [ ] 2d distribution WorkSet plots\n    - [x] Estimator plots: free energy, friction & both\n    - [x] Normality plot\n    - [x] Confidence intervals\n    - [ ] Exponential estimator class\n- [ ] Discuss gaussian kernel borders\n\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "Analyse targeted molecular dynamics data with dcTMD",
    "version": "0.3.0",
    "split_keywords": [
        "enhanced sampling",
        "friction",
        "md analysis"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cdcae4d786554b0034c90c6bc92973f503900165ec3b8032261579fbbe742806",
                "md5": "b8d6e24b98d87933d9f09e31e29fba36",
                "sha256": "00fc4671aa3bb86373258ff2b0598b39f456a888e3f48a29545e8fb1c2cd3f88"
            },
            "downloads": -1,
            "filename": "dcTMD-0.3.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b8d6e24b98d87933d9f09e31e29fba36",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 20289,
            "upload_time": "2023-03-28T11:16:10",
            "upload_time_iso_8601": "2023-03-28T11:16:10.646205Z",
            "url": "https://files.pythonhosted.org/packages/cd/ca/e4d786554b0034c90c6bc92973f503900165ec3b8032261579fbbe742806/dcTMD-0.3.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c350b80ecae91dbbec6cf4204979769cad642f8dc3043187678d1a368784605b",
                "md5": "c57989af138a05775ff99d6dd671c2f8",
                "sha256": "63a71bb1111317092990088c160e1fce74b1bfd548e5dce8ca6c3bcee250b5b3"
            },
            "downloads": -1,
            "filename": "dcTMD-0.3.0.tar.gz",
            "has_sig": false,
            "md5_digest": "c57989af138a05775ff99d6dd671c2f8",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 23154,
            "upload_time": "2023-03-28T11:16:12",
            "upload_time_iso_8601": "2023-03-28T11:16:12.865804Z",
            "url": "https://files.pythonhosted.org/packages/c3/50/b80ecae91dbbec6cf4204979769cad642f8dc3043187678d1a368784605b/dcTMD-0.3.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-03-28 11:16:12",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "moldyn",
    "github_project": "dcTMD",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "dctmd"
}
        
Elapsed time: 0.05933s