Name | ddeint JSON |
Version |
0.3.0
JSON |
| download |
home_page | None |
Summary | Scipy-based Delay Differential Equations solver |
upload_time | 2024-08-27 03:20:46 |
maintainer | None |
docs_url | None |
author | Zulko |
requires_python | >=3.8 |
license | CCO |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# ddeint
[![PyPI](https://img.shields.io/pypi/v/ddeint.svg)](https://pypi.org/project/ddeint/)
[![Tests](https://github.com/zulko/ddeint/actions/workflows/test.yml/badge.svg)](https://github.com/zulko/ddeint/actions/workflows/test.yml)
[![Changelog](https://img.shields.io/github/v/release/zulko/ddeint?include_prereleases&label=changelog)](https://github.com/zulko/ddeint/releases)
Scipy-based delay differential equation (DDE) solver. See the docstrings and examples for more infos.
## Examples
```python
from pylab import cos, linspace, subplots
from ddeint import ddeint
# We solve the following system:
# Y(t) = 1 for t < 0
# dY/dt = -Y(t - 3cos(t)**2) for t > 0
def values_before_zero(t):
return 1
def model(Y, t):
return -Y(t - 3 * cos(Y(t)) ** 2)
tt = linspace(0, 30, 2000)
yy = ddeint(model, values_before_zero, tt)
fig, ax = subplots(1, figsize=(4, 4))
ax.plot(tt, yy)
ax.figure.savefig("variable_delay.jpeg")
```
![screenshot](https://github.com/Zulko/ddeint/raw/master/examples/variable_delay.jpeg)
```python
from pylab import array, linspace, subplots
from ddeint import ddeint
# We solve the following system:
# X(t) = 1 (t < 0)
# Y(t) = 2 (t < 0)
# dX/dt = X * (1 - Y(t-d)) / 2
# dY/dt = -Y * (1 - X(t-d)) / 2
def model(Y, t, d):
x, y = Y(t)
xd, yd = Y(t - d)
return array([0.5 * x * (1 - yd), -0.5 * y * (1 - xd)])
g = lambda t: array([1, 2])
tt = linspace(2, 30, 20000)
fig, ax = subplots(1, figsize=(4, 4))
for d in [0, 0.2]:
print("Computing for d=%.02f" % d)
yy = ddeint(model, g, tt, fargs=(d,))
# WE PLOT X AGAINST Y
ax.plot(yy[:, 0], yy[:, 1], lw=2, label="delay = %.01f" % d)
ax.figure.savefig("lotka.jpeg")
```
![screenshot](https://github.com/Zulko/ddeint/raw/master/examples/lotka.jpeg)
## Licence
Public domain. Everyone is welcome to contribute !
## Installation
ddeint can be installed by unzipping the source code in one directory and using this command: ::
(sudo) python setup.py install
You can also install it directly from the Python Package Index with this command: ::
(sudo) pip install ddeint
Raw data
{
"_id": null,
"home_page": null,
"name": "ddeint",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": null,
"author": "Zulko",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/ce/06/094f64e440a9d9f14ebf9d1c3fdd9637b2bbc0709fe3cc2196bcd6f78ad9/ddeint-0.3.0.tar.gz",
"platform": null,
"description": "# ddeint\n\n[![PyPI](https://img.shields.io/pypi/v/ddeint.svg)](https://pypi.org/project/ddeint/)\n[![Tests](https://github.com/zulko/ddeint/actions/workflows/test.yml/badge.svg)](https://github.com/zulko/ddeint/actions/workflows/test.yml)\n[![Changelog](https://img.shields.io/github/v/release/zulko/ddeint?include_prereleases&label=changelog)](https://github.com/zulko/ddeint/releases)\n\n\nScipy-based delay differential equation (DDE) solver. See the docstrings and examples for more infos.\n\n## Examples\n\n\n```python\nfrom pylab import cos, linspace, subplots\nfrom ddeint import ddeint\n\n# We solve the following system:\n# Y(t) = 1 for t < 0\n# dY/dt = -Y(t - 3cos(t)**2) for t > 0\n\ndef values_before_zero(t):\n return 1\n\ndef model(Y, t):\n return -Y(t - 3 * cos(Y(t)) ** 2)\n\ntt = linspace(0, 30, 2000)\nyy = ddeint(model, values_before_zero, tt)\n\nfig, ax = subplots(1, figsize=(4, 4))\nax.plot(tt, yy)\nax.figure.savefig(\"variable_delay.jpeg\")\n```\n\n![screenshot](https://github.com/Zulko/ddeint/raw/master/examples/variable_delay.jpeg)\n\n```python\nfrom pylab import array, linspace, subplots\nfrom ddeint import ddeint\n\n# We solve the following system:\n# X(t) = 1 (t < 0)\n# Y(t) = 2 (t < 0)\n# dX/dt = X * (1 - Y(t-d)) / 2\n# dY/dt = -Y * (1 - X(t-d)) / 2\n\n\ndef model(Y, t, d):\n x, y = Y(t)\n xd, yd = Y(t - d)\n return array([0.5 * x * (1 - yd), -0.5 * y * (1 - xd)])\n\n\ng = lambda t: array([1, 2])\ntt = linspace(2, 30, 20000)\n\nfig, ax = subplots(1, figsize=(4, 4))\n\nfor d in [0, 0.2]:\n print(\"Computing for d=%.02f\" % d)\n yy = ddeint(model, g, tt, fargs=(d,))\n # WE PLOT X AGAINST Y\n ax.plot(yy[:, 0], yy[:, 1], lw=2, label=\"delay = %.01f\" % d)\n\nax.figure.savefig(\"lotka.jpeg\")\n```\n\n![screenshot](https://github.com/Zulko/ddeint/raw/master/examples/lotka.jpeg)\n\n## Licence\n\n\nPublic domain. Everyone is welcome to contribute !\n\n## Installation\n\nddeint can be installed by unzipping the source code in one directory and using this command: ::\n\n (sudo) python setup.py install\n\nYou can also install it directly from the Python Package Index with this command: ::\n\n (sudo) pip install ddeint \n",
"bugtrack_url": null,
"license": "CCO",
"summary": "Scipy-based Delay Differential Equations solver",
"version": "0.3.0",
"project_urls": {
"CI": "https://github.com/zulko/ddeint/actions",
"Changelog": "https://github.com/zulko/ddeint/releases",
"Homepage": "https://github.com/zulko/ddeint",
"Issues": "https://github.com/zulko/ddeint/issues"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "1def6303681fdc6cf3b72d0b158ea9b18480a1ebc3fab16605a243112725fa68",
"md5": "74d25604a31821a3850626f84e93c994",
"sha256": "44c5cbb447069539ae5d03b245738724da6575bb0388d99261dabc0f8e162841"
},
"downloads": -1,
"filename": "ddeint-0.3.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "74d25604a31821a3850626f84e93c994",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 6814,
"upload_time": "2024-08-27T03:20:45",
"upload_time_iso_8601": "2024-08-27T03:20:45.255891Z",
"url": "https://files.pythonhosted.org/packages/1d/ef/6303681fdc6cf3b72d0b158ea9b18480a1ebc3fab16605a243112725fa68/ddeint-0.3.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ce06094f64e440a9d9f14ebf9d1c3fdd9637b2bbc0709fe3cc2196bcd6f78ad9",
"md5": "1796df8caad35de1f45a59f1071b029b",
"sha256": "51dd96545e06750037b25329880896d9408940a67a6228d0a07a82c38e33710f"
},
"downloads": -1,
"filename": "ddeint-0.3.0.tar.gz",
"has_sig": false,
"md5_digest": "1796df8caad35de1f45a59f1071b029b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 6859,
"upload_time": "2024-08-27T03:20:46",
"upload_time_iso_8601": "2024-08-27T03:20:46.388515Z",
"url": "https://files.pythonhosted.org/packages/ce/06/094f64e440a9d9f14ebf9d1c3fdd9637b2bbc0709fe3cc2196bcd6f78ad9/ddeint-0.3.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-08-27 03:20:46",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "zulko",
"github_project": "ddeint",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "ddeint"
}