decision-security


Namedecision-security JSON
Version 0.1.0a2 PyPI version JSON
download
home_pageNone
SummaryReusable decision-science utilities for security: Monte Carlo, Bayes, Survival, VoI, causal helpers, and viz.
upload_time2025-10-09 15:42:33
maintainerNone
docs_urlNone
authorLaura Voicu
requires_python>=3.9
licenseMIT
keywords bayesian causal cybersecurity monte carlo risk survival value of information
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Decision Security

Reusable **decision-science utilities for security** — Monte Carlo risk bands, Bayesian updates & calibration, survival helpers, Value of Information, light causal helpers, and visualization.

```bash
pip install decision-security 
```

## Quickstart

```python
import numpy as np
from decision_security.montecarlo import risk_bands, var_es, make_lognormal_severity, simulate_aggregate_losses

sev = make_lognormal_severity(meanlog=8.0, sdlog=1.2)
losses = simulate_aggregate_losses(n_periods=10000, lam=0.6, severity_sampler=sev)
print(risk_bands(losses))      # {'p50': ..., 'p90': ..., 'p95': ...}
print(var_es(losses))          # (VaR95, ES95)
```

## Modules
	•	synth: synthetic data (heavy-tail losses, counts, mixtures, survival with censoring, categorical/Dirichlet).
	•	montecarlo: Poisson frequency + severity, risk bands, VaR/ES.
	•	bayes: Beta-Binomial & Normal(known σ) updates, calibration helpers.
	•	survival: simple Kaplan–Meier & Nelson–Aalen estimates.
	•	voi: Expected Value of Perfect Information (EVPI) and simple ROI selection.
	•	causal: tiny DAG utilities (parents, descendants, naive backdoor set).
	•	viz: small matplotlib helpers (loss distribution, risk bands, KM curves).

Status: 0.x (APIs may change). MIT License.

See docs & examples: Security Decision Science Book and the Security Decision Labs playground.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "decision-security",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "bayesian, causal, cybersecurity, monte carlo, risk, survival, value of information",
    "author": "Laura Voicu",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/41/8c/075baf5bbcc91a5073a5db8865098e3d198ab90bfdef1acd8c3b965f98ee/decision_security-0.1.0a2.tar.gz",
    "platform": null,
    "description": "# Decision Security\n\nReusable **decision-science utilities for security** \u2014 Monte Carlo risk bands, Bayesian updates & calibration, survival helpers, Value of Information, light causal helpers, and visualization.\n\n```bash\npip install decision-security \n```\n\n## Quickstart\n\n```python\nimport numpy as np\nfrom decision_security.montecarlo import risk_bands, var_es, make_lognormal_severity, simulate_aggregate_losses\n\nsev = make_lognormal_severity(meanlog=8.0, sdlog=1.2)\nlosses = simulate_aggregate_losses(n_periods=10000, lam=0.6, severity_sampler=sev)\nprint(risk_bands(losses))      # {'p50': ..., 'p90': ..., 'p95': ...}\nprint(var_es(losses))          # (VaR95, ES95)\n```\n\n## Modules\n\t\u2022\tsynth: synthetic data (heavy-tail losses, counts, mixtures, survival with censoring, categorical/Dirichlet).\n\t\u2022\tmontecarlo: Poisson frequency + severity, risk bands, VaR/ES.\n\t\u2022\tbayes: Beta-Binomial & Normal(known \u03c3) updates, calibration helpers.\n\t\u2022\tsurvival: simple Kaplan\u2013Meier & Nelson\u2013Aalen estimates.\n\t\u2022\tvoi: Expected Value of Perfect Information (EVPI) and simple ROI selection.\n\t\u2022\tcausal: tiny DAG utilities (parents, descendants, naive backdoor set).\n\t\u2022\tviz: small matplotlib helpers (loss distribution, risk bands, KM curves).\n\nStatus: 0.x (APIs may change). MIT License.\n\nSee docs & examples: Security Decision Science Book and the Security Decision Labs playground.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Reusable decision-science utilities for security: Monte Carlo, Bayes, Survival, VoI, causal helpers, and viz.",
    "version": "0.1.0a2",
    "project_urls": {
        "Documentation": "https://github.com/security-decision-science/security-decision-science-book",
        "Homepage": "https://github.com/security-decision-science/decision-security",
        "Issues": "https://github.com/security-decision-science/decision-security/issues",
        "Repository": "https://github.com/security-decision-science/decision-security"
    },
    "split_keywords": [
        "bayesian",
        " causal",
        " cybersecurity",
        " monte carlo",
        " risk",
        " survival",
        " value of information"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "09125aefd5aa53ee8f595f6081cdce3fa2c5bfcdbfb7fd45b199c3a6061c6505",
                "md5": "3dcd1c58bc79b748e7ed0494048c5c3f",
                "sha256": "ea5c850c63efac88d15207bbf15c205e78207f770ac195880284b71a36a40e12"
            },
            "downloads": -1,
            "filename": "decision_security-0.1.0a2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3dcd1c58bc79b748e7ed0494048c5c3f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 2855,
            "upload_time": "2025-10-09T15:42:31",
            "upload_time_iso_8601": "2025-10-09T15:42:31.409723Z",
            "url": "https://files.pythonhosted.org/packages/09/12/5aefd5aa53ee8f595f6081cdce3fa2c5bfcdbfb7fd45b199c3a6061c6505/decision_security-0.1.0a2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "418c075baf5bbcc91a5073a5db8865098e3d198ab90bfdef1acd8c3b965f98ee",
                "md5": "dc816730cb09a68b2dce6c819a82182d",
                "sha256": "441298ed89a20f12c8be448b521d9da1507d2054e81be3f93744d403891cc8c4"
            },
            "downloads": -1,
            "filename": "decision_security-0.1.0a2.tar.gz",
            "has_sig": false,
            "md5_digest": "dc816730cb09a68b2dce6c819a82182d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 10385,
            "upload_time": "2025-10-09T15:42:33",
            "upload_time_iso_8601": "2025-10-09T15:42:33.503080Z",
            "url": "https://files.pythonhosted.org/packages/41/8c/075baf5bbcc91a5073a5db8865098e3d198ab90bfdef1acd8c3b965f98ee/decision_security-0.1.0a2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-09 15:42:33",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "security-decision-science",
    "github_project": "security-decision-science-book",
    "github_not_found": true,
    "lcname": "decision-security"
}
        
Elapsed time: 1.92588s