decodanda


Namedecodanda JSON
Version 0.7.2 PyPI version JSON
download
home_pagehttps://github.com/lposani/decodanda
SummaryGeometric decoding of neural data with built-in best practices.
upload_time2024-11-07 21:57:07
maintainerNone
docs_urlNone
authorLorenzo Posani
requires_pythonNone
licenseNone
keywords python decoding neuroscience ccgp neural activity population activity neural decoding geometry
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Decodanda (dog latin for "to be decoded") is a best-practices-made-easy Python package for decoding neural data. Decodanda is designed to expose a user-friendly and flexible interface for population activity decoding, with a series of built-in best practices to avoid the most common pitfalls. In addition, Decodanda exposes a series of functions to compute the Cross-Condition Generalization Performance (CCGP, Bernardi et al. 2020) for the geometrical analysis of neural population activity.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/lposani/decodanda",
    "name": "decodanda",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "python, decoding, neuroscience, ccgp, neural activity, population activity, neural decoding, geometry",
    "author": "Lorenzo Posani",
    "author_email": "lorenzo.posani@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/18/93/c4a653cd38f2ff4aa471838c2807027296d780cf58db8d17fa9135651715/decodanda-0.7.2.tar.gz",
    "platform": null,
    "description": "Decodanda (dog latin for \"to be decoded\") is a best-practices-made-easy Python package for decoding neural data. Decodanda is designed to expose a user-friendly and flexible interface for population activity decoding, with a series of built-in best practices to avoid the most common pitfalls. In addition, Decodanda exposes a series of functions to compute the Cross-Condition Generalization Performance (CCGP, Bernardi et al. 2020) for the geometrical analysis of neural population activity.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Geometric decoding of neural data with built-in best practices.",
    "version": "0.7.2",
    "project_urls": {
        "Homepage": "https://github.com/lposani/decodanda"
    },
    "split_keywords": [
        "python",
        " decoding",
        " neuroscience",
        " ccgp",
        " neural activity",
        " population activity",
        " neural decoding",
        " geometry"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "dbe93ece57adf1afee07c6d8fdf3b284caa461ce0aa1dd6d5899c8f33d5852f0",
                "md5": "4debaf68ac3b783354fec97181d844b8",
                "sha256": "5080ae435ca8242e660fa3d2fef15f75bb43c2afab18b52e7904836854b2e6ec"
            },
            "downloads": -1,
            "filename": "decodanda-0.7.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "4debaf68ac3b783354fec97181d844b8",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 53480,
            "upload_time": "2024-11-07T21:57:05",
            "upload_time_iso_8601": "2024-11-07T21:57:05.618970Z",
            "url": "https://files.pythonhosted.org/packages/db/e9/3ece57adf1afee07c6d8fdf3b284caa461ce0aa1dd6d5899c8f33d5852f0/decodanda-0.7.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1893c4a653cd38f2ff4aa471838c2807027296d780cf58db8d17fa9135651715",
                "md5": "c296035bedf37e7d0edbbddf58b32614",
                "sha256": "85d48890ae40e6240449a8a25cb9c7c3ee8689faa5163d0cd1816294a942bbbd"
            },
            "downloads": -1,
            "filename": "decodanda-0.7.2.tar.gz",
            "has_sig": false,
            "md5_digest": "c296035bedf37e7d0edbbddf58b32614",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 58328,
            "upload_time": "2024-11-07T21:57:07",
            "upload_time_iso_8601": "2024-11-07T21:57:07.382418Z",
            "url": "https://files.pythonhosted.org/packages/18/93/c4a653cd38f2ff4aa471838c2807027296d780cf58db8d17fa9135651715/decodanda-0.7.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-07 21:57:07",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "lposani",
    "github_project": "decodanda",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "decodanda"
}
        
Elapsed time: 0.80252s