Decodanda (dog latin for "to be decoded") is a best-practices-made-easy Python package for decoding neural data. Decodanda is designed to expose a user-friendly and flexible interface for population activity decoding, with a series of built-in best practices to avoid the most common pitfalls. In addition, Decodanda exposes a series of functions to compute the Cross-Condition Generalization Performance (CCGP, Bernardi et al. 2020) for the geometrical analysis of neural population activity.
Raw data
{
"_id": null,
"home_page": "https://github.com/lposani/decodanda",
"name": "decodanda",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "python, decoding, neuroscience, ccgp, neural activity, population activity, neural decoding, geometry",
"author": "Lorenzo Posani",
"author_email": "lorenzo.posani@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/18/93/c4a653cd38f2ff4aa471838c2807027296d780cf58db8d17fa9135651715/decodanda-0.7.2.tar.gz",
"platform": null,
"description": "Decodanda (dog latin for \"to be decoded\") is a best-practices-made-easy Python package for decoding neural data. Decodanda is designed to expose a user-friendly and flexible interface for population activity decoding, with a series of built-in best practices to avoid the most common pitfalls. In addition, Decodanda exposes a series of functions to compute the Cross-Condition Generalization Performance (CCGP, Bernardi et al. 2020) for the geometrical analysis of neural population activity.\n",
"bugtrack_url": null,
"license": null,
"summary": "Geometric decoding of neural data with built-in best practices.",
"version": "0.7.2",
"project_urls": {
"Homepage": "https://github.com/lposani/decodanda"
},
"split_keywords": [
"python",
" decoding",
" neuroscience",
" ccgp",
" neural activity",
" population activity",
" neural decoding",
" geometry"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "dbe93ece57adf1afee07c6d8fdf3b284caa461ce0aa1dd6d5899c8f33d5852f0",
"md5": "4debaf68ac3b783354fec97181d844b8",
"sha256": "5080ae435ca8242e660fa3d2fef15f75bb43c2afab18b52e7904836854b2e6ec"
},
"downloads": -1,
"filename": "decodanda-0.7.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "4debaf68ac3b783354fec97181d844b8",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 53480,
"upload_time": "2024-11-07T21:57:05",
"upload_time_iso_8601": "2024-11-07T21:57:05.618970Z",
"url": "https://files.pythonhosted.org/packages/db/e9/3ece57adf1afee07c6d8fdf3b284caa461ce0aa1dd6d5899c8f33d5852f0/decodanda-0.7.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1893c4a653cd38f2ff4aa471838c2807027296d780cf58db8d17fa9135651715",
"md5": "c296035bedf37e7d0edbbddf58b32614",
"sha256": "85d48890ae40e6240449a8a25cb9c7c3ee8689faa5163d0cd1816294a942bbbd"
},
"downloads": -1,
"filename": "decodanda-0.7.2.tar.gz",
"has_sig": false,
"md5_digest": "c296035bedf37e7d0edbbddf58b32614",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 58328,
"upload_time": "2024-11-07T21:57:07",
"upload_time_iso_8601": "2024-11-07T21:57:07.382418Z",
"url": "https://files.pythonhosted.org/packages/18/93/c4a653cd38f2ff4aa471838c2807027296d780cf58db8d17fa9135651715/decodanda-0.7.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-07 21:57:07",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "lposani",
"github_project": "decodanda",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "decodanda"
}