# decoupler - Ensemble of methods to infer biological activities <img src="https://github.com/saezlab/decoupleR/blob/master/inst/figures/logo.svg?raw=1" align="right" width="120" class="no-scaled-link" />
<!-- badges: start -->
[](https://github.com/saezlab/decoupler-py/actions)
[](https://github.com/saezlab/decoupler-py/issues/)
[](https://pepy.tech/project/decoupler)
[](https://decoupler-py.readthedocs.io/en/latest/?badge=latest)
[](https://codecov.io/gh/saezlab/decoupler-py)
[](https://anaconda.org/conda-forge/decoupler-py)
[](https://anaconda.org/conda-forge/decoupler-py)
<!-- badges: end -->
`decoupler` is a package containing different enrichment statistical methods to extract biologically driven scores from omics data within a unified framework.
This is its faster and memory efficient Python implementation, for the R version go [here](https://github.com/saezlab/decoupleR).
For further information and example tutorials, please check our [documentation](https://decoupler-py.readthedocs.io/en/latest/index.html).
If you have any question or problem do not hesitate to open an [issue](https://github.com/saezlab/decoupler-py/issues).
## Installation
`decoupler` can be installed from `pip` (lightweight installation)::
```
pip install decoupler
```
It can also be installed from `conda` and `mamba` (this includes extra dependencies):
```
mamba create -n=decoupler conda-forge::decoupler-py
```
Alternatively, to stay up-to-date with the newest unreleased version, install from source:
```
pip install git+https://github.com/saezlab/decoupler-py.git
```
## scverse
`decoupler` is part of the [scverse](https://scverse.org) ecosystem, a collection of tools for single-cell omics data analysis in python.
For more information check the link.
## License
Enrichment methods inside decoupler can be used for academic or commercial purposes, except `viper` which holds a non-commercial license.
The data redistributed by OmniPath does not have a license, each original resource carries their own.
[Here](https://omnipathdb.org/info) one can find the license information of all the resources in OmniPath.
## Citation
Badia-i-Mompel P., Vélez Santiago J., Braunger J., Geiss C., Dimitrov D.,
Müller-Dott S., Taus P., Dugourd A., Holland C.H., Ramirez Flores R.O.
and Saez-Rodriguez J. 2022. decoupleR: Ensemble of computational methods
to infer biological activities from omics data. Bioinformatics Advances.
<https://doi.org/10.1093/bioadv/vbac016>
Raw data
{
"_id": null,
"home_page": null,
"name": "decoupler",
"maintainer": null,
"docs_url": null,
"requires_python": "<3.12,>=3.9",
"maintainer_email": null,
"keywords": "systems biology, molecular biology, signaling network, transcriptomics, modeling, mechanistic modeling, activity inference, molecular network, omics, biomedicine, molecular footprint, molecular signature",
"author": "Pau Badia i Mompel",
"author_email": "pau.badia@uni-heidelberg.de",
"download_url": "https://files.pythonhosted.org/packages/62/84/ed1caf03a7a93260005b7148590d26c5b7d81d7b23ada86de332c7b23093/decoupler-1.9.0.tar.gz",
"platform": null,
"description": "# decoupler - Ensemble of methods to infer biological activities <img src=\"https://github.com/saezlab/decoupleR/blob/master/inst/figures/logo.svg?raw=1\" align=\"right\" width=\"120\" class=\"no-scaled-link\" />\n<!-- badges: start -->\n[](https://github.com/saezlab/decoupler-py/actions)\n[](https://github.com/saezlab/decoupler-py/issues/)\n[](https://pepy.tech/project/decoupler)\n[](https://decoupler-py.readthedocs.io/en/latest/?badge=latest)\n[](https://codecov.io/gh/saezlab/decoupler-py)\n\n[](https://anaconda.org/conda-forge/decoupler-py)\n[](https://anaconda.org/conda-forge/decoupler-py)\n<!-- badges: end -->\n\n`decoupler` is a package containing different enrichment statistical methods to extract biologically driven scores from omics data within a unified framework.\nThis is its faster and memory efficient Python implementation, for the R version go [here](https://github.com/saezlab/decoupleR).\n\nFor further information and example tutorials, please check our [documentation](https://decoupler-py.readthedocs.io/en/latest/index.html).\n\nIf you have any question or problem do not hesitate to open an [issue](https://github.com/saezlab/decoupler-py/issues).\n\n## Installation\n\n`decoupler` can be installed from `pip` (lightweight installation)::\n```\npip install decoupler\n```\n\nIt can also be installed from `conda` and `mamba` (this includes extra dependencies):\n```\nmamba create -n=decoupler conda-forge::decoupler-py\n```\n\nAlternatively, to stay up-to-date with the newest unreleased version, install from source: \n```\npip install git+https://github.com/saezlab/decoupler-py.git\n```\n\n## scverse\n`decoupler` is part of the [scverse](https://scverse.org) ecosystem, a collection of tools for single-cell omics data analysis in python.\nFor more information check the link.\n\n## License\nEnrichment methods inside decoupler can be used for academic or commercial purposes, except `viper` which holds a non-commercial license. \n\nThe data redistributed by OmniPath does not have a license, each original resource carries their own. \n[Here](https://omnipathdb.org/info) one can find the license information of all the resources in OmniPath.\n\n## Citation\n\nBadia-i-Mompel P., V\u00e9lez Santiago J., Braunger J., Geiss C., Dimitrov D.,\nM\u00fcller-Dott S., Taus P., Dugourd A., Holland C.H., Ramirez Flores R.O.\nand Saez-Rodriguez J. 2022. decoupleR: Ensemble of computational methods\nto infer biological activities from omics data. Bioinformatics Advances.\n<https://doi.org/10.1093/bioadv/vbac016>\n\n",
"bugtrack_url": null,
"license": "GPL-3.0-only",
"summary": "Ensemble of methods to infer biological activities from omics data",
"version": "1.9.0",
"project_urls": {
"Bug Tracker": "https://github.com/saezlab/decoupler-py/issues",
"Documentation": "https://decoupler.readthedocs.io/",
"Homepage": "https://decoupler.readthedocs.io/",
"Repository": "https://github.com/saezlab/decoupler-py"
},
"split_keywords": [
"systems biology",
" molecular biology",
" signaling network",
" transcriptomics",
" modeling",
" mechanistic modeling",
" activity inference",
" molecular network",
" omics",
" biomedicine",
" molecular footprint",
" molecular signature"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "6ebf9e435e1777f6f9f6b120dd602f0df18817c264784f5c5729d24078fa886f",
"md5": "03cabde9417ece7fba31ede08175b6b8",
"sha256": "4aadbcce54cd8e6f39119118a99801250dd5877d75deef04d6f449d3661d8478"
},
"downloads": -1,
"filename": "decoupler-1.9.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "03cabde9417ece7fba31ede08175b6b8",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<3.12,>=3.9",
"size": 122414,
"upload_time": "2025-02-05T17:04:01",
"upload_time_iso_8601": "2025-02-05T17:04:01.025813Z",
"url": "https://files.pythonhosted.org/packages/6e/bf/9e435e1777f6f9f6b120dd602f0df18817c264784f5c5729d24078fa886f/decoupler-1.9.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "6284ed1caf03a7a93260005b7148590d26c5b7d81d7b23ada86de332c7b23093",
"md5": "8683baf6b141887883e572b7b0625f6b",
"sha256": "7663454ed36170e34582e3c4434246d1e81bb87f8f50034f843f2b77909fe208"
},
"downloads": -1,
"filename": "decoupler-1.9.0.tar.gz",
"has_sig": false,
"md5_digest": "8683baf6b141887883e572b7b0625f6b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<3.12,>=3.9",
"size": 92561,
"upload_time": "2025-02-05T17:04:03",
"upload_time_iso_8601": "2025-02-05T17:04:03.852937Z",
"url": "https://files.pythonhosted.org/packages/62/84/ed1caf03a7a93260005b7148590d26c5b7d81d7b23ada86de332c7b23093/decoupler-1.9.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-05 17:04:03",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "saezlab",
"github_project": "decoupler-py",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "decoupler"
}