deep-code


Namedeep-code JSON
Version 0.1.5 PyPI version JSON
download
home_pageNone
Summarydeepesdl earthcode integration utility tool
upload_time2025-08-20 07:25:22
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseMIT
keywords analysis ready data data science datacube xarray zarr xcube stac fair reproducible workflow deepesdl
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # deep-code

[![Build Status](https://github.com/deepesdl/deep-code/actions/workflows/unittest-workflow.yaml/badge.svg)](https://github.com/deepesdl/deep-code/actions/workflows/unittest-workflow.yaml)
[![codecov](https://codecov.io/gh/deepesdl/deep-code/graph/badge.svg?token=47MQXOXWOK)](https://codecov.io/gh/deepesdl/deep-code)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![License](https://img.shields.io/github/license/dcs4cop/xcube-smos)](https://github.com/deepesdl/deep-code/blob/main/LICENSE)

`deep-code` is a lightweight python tool that comprises a command line interface(CLI) 
and Python API providing utilities that aid integration of DeepESDL datasets, 
experiments with EarthCODE.

The first release will focus on implementing the publish feature of DeepESDL 
experiments/workflow as OGC API record and Datasets as an OSC stac collection.

## Setup

## Install
`deep-code` will be available in PyPI for now and will be available in conda-forge 
in the near future. Till the stable release,
developers/contributors can follow the below steps to install deep-code.

## Installing from the repository for Developers/Contributors

To install deep-code directly from the git repository, clone the repository, and execute the steps below:

```commandline
conda env create
conda activate deep-code
pip install -e .
```

This installs all the dependencies of `deep-code` into a fresh conda environment, 
and installs deep-code from the repository into the same environment.

## Testing

To run the unit test suite:

```commandline
pytest
```

To analyze test coverage
```shell
pytest --cov=deep-code
```

To produce an HTML coverage report

```commandline
pytest --cov-report html --cov=deep-code
```

## deep_code usage

`deep_code` provides a command-line tool called deep-code, which has several subcommands 
providing different utility functions.
Use the --help option with these subcommands to get more details on usage.

The CLI retrieves the Git username and personal access token from a hidden file named 
.gitaccess. Ensure this file is located in the same directory where you execute the CLI
command.

#### .gitaccess example

```
github-username: your-git-user
github-token: personal access token
```
### deep-code generate-config

Generates starter configuration templates for publishing to EarthCODE openscience 
catalog.

#### Usage
```
deep-code generate-config [OPTIONS]
```

#### Options
     --output-dir, -o : Output directory (default: current)

#### Examples:
```
deep-code generate-config
deep-code generate-config -o ./configs
```

###  deep-code publish

Publishes metadata of experiment, workflow and dataset to the EarthCODE open-science 
catalog

### Usage
```
deep-code publish DATASET_CONFIG WORKFLOW_CONFIG [--environment ENVIRONMENT]
 ```

#### Arguments
    DATASET_CONFIG - Path to the dataset configuration YAML file
    (e.g., dataset-config.yaml)

    WORKFLOW_CONFIG - Path to the workflow configuration YAML file
    (e.g., workflow-config.yaml)

#### Options
    --environment, -e - Target catalog environment:
    production (default) | staging | testing

#### Examples:
1. Publish to staging catalog
```
deep-code publish dataset-config.yaml workflow-config.yaml --environment=staging
```
2. Publish to testing catalog
```
deep-code publish dataset-config.yaml workflow-config.yaml -e testing
```
3. Publish to production catalog
```
deep-code publish dataset-config.yaml workflow-config.yaml
```
#### dataset-config.yaml example

```
dataset_id: esa-cci-permafrost-1x1151x1641-1.0.0.zarr
collection_id: esa-cci-permafrost
osc_themes:
  - cryosphere
osc_region: global
# non-mandatory
documentation_link: https://deepesdl.readthedocs.io/en/latest/datasets/esa-cci-permafrost-1x1151x1641-0-0-2-zarr
access_link: s3://deep-esdl-public/esa-cci-permafrost-1x1151x1641-1.0.0.zarr
dataset_status: completed
```

dataset-id has to be a valid dataset-id from `deep-esdl-public` s3 bucket or your team 
bucket.

#### workflow-config.yaml example

```
workflow_id: "esa-cci-permafrost"
properties:
  title: "ESA CCI permafrost"
  description: "cube generation workflow for esa-cci-permafrost"
  keywords:
    - Earth Science
  themes:
      - cryosphere
  license: proprietary
  jupyter_kernel_info:
    name: deepesdl-xcube-1.8.3
    python_version: 3.11
    env_file: "https://github.com/deepesdl/cube-gen/blob/main/Permafrost/environment.yml"
jupyter_notebook_url: "https://github.com/deepesdl/cube-gen/blob/main/Permafrost/Create-CCI-Permafrost-cube-EarthCODE.ipynb"
contact:
  - name: Tejas Morbagal Harish
    organization: Brockmann Consult GmbH
    links:
      - rel: "about"
        type: "text/html"
        href: "https://www.brockmann-consult.de/"
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "deep-code",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "analysis ready data, data science, datacube, xarray, zarr, xcube, stac, FAIR, reproducible workflow, DeepESDL",
    "author": null,
    "author_email": "Tejas Morbagal Harish <tejas.morbagalharish@brockmann-consult.de>",
    "download_url": "https://files.pythonhosted.org/packages/1c/6e/5e159555029d5b6f0eeb7dfd6f1d59fc5a4607c28fef50f8151b6fdcf12a/deep_code-0.1.5.tar.gz",
    "platform": null,
    "description": "# deep-code\n\n[![Build Status](https://github.com/deepesdl/deep-code/actions/workflows/unittest-workflow.yaml/badge.svg)](https://github.com/deepesdl/deep-code/actions/workflows/unittest-workflow.yaml)\n[![codecov](https://codecov.io/gh/deepesdl/deep-code/graph/badge.svg?token=47MQXOXWOK)](https://codecov.io/gh/deepesdl/deep-code)\n[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n[![License](https://img.shields.io/github/license/dcs4cop/xcube-smos)](https://github.com/deepesdl/deep-code/blob/main/LICENSE)\n\n`deep-code` is a lightweight python tool that comprises a command line interface(CLI) \nand Python API providing utilities that aid integration of DeepESDL datasets, \nexperiments with EarthCODE.\n\nThe first release will focus on implementing the publish feature of DeepESDL \nexperiments/workflow as OGC API record and Datasets as an OSC stac collection.\n\n## Setup\n\n## Install\n`deep-code` will be available in PyPI for now and will be available in conda-forge \nin the near future. Till the stable release,\ndevelopers/contributors can follow the below steps to install deep-code.\n\n## Installing from the repository for Developers/Contributors\n\nTo install deep-code directly from the git repository, clone the repository, and execute the steps below:\n\n```commandline\nconda env create\nconda activate deep-code\npip install -e .\n```\n\nThis installs all the dependencies of `deep-code` into a fresh conda environment, \nand installs deep-code from the repository into the same environment.\n\n## Testing\n\nTo run the unit test suite:\n\n```commandline\npytest\n```\n\nTo analyze test coverage\n```shell\npytest --cov=deep-code\n```\n\nTo produce an HTML coverage report\n\n```commandline\npytest --cov-report html --cov=deep-code\n```\n\n## deep_code usage\n\n`deep_code` provides a command-line tool called deep-code, which has several subcommands \nproviding different utility functions.\nUse the --help option with these subcommands to get more details on usage.\n\nThe CLI retrieves the Git username and personal access token from a hidden file named \n.gitaccess. Ensure this file is located in the same directory where you execute the CLI\ncommand.\n\n#### .gitaccess example\n\n```\ngithub-username: your-git-user\ngithub-token: personal access token\n```\n### deep-code generate-config\n\nGenerates starter configuration templates for publishing to EarthCODE openscience \ncatalog.\n\n#### Usage\n```\ndeep-code generate-config [OPTIONS]\n```\n\n#### Options\n     --output-dir, -o : Output directory (default: current)\n\n#### Examples:\n```\ndeep-code generate-config\ndeep-code generate-config -o ./configs\n```\n\n###  deep-code publish\n\nPublishes metadata of experiment, workflow and dataset to the EarthCODE open-science \ncatalog\n\n### Usage\n```\ndeep-code publish DATASET_CONFIG WORKFLOW_CONFIG [--environment ENVIRONMENT]\n ```\n\n#### Arguments\n    DATASET_CONFIG - Path to the dataset configuration YAML file\n    (e.g., dataset-config.yaml)\n\n    WORKFLOW_CONFIG - Path to the workflow configuration YAML file\n    (e.g., workflow-config.yaml)\n\n#### Options\n    --environment, -e - Target catalog environment:\n    production (default) | staging | testing\n\n#### Examples:\n1. Publish to staging catalog\n```\ndeep-code publish dataset-config.yaml workflow-config.yaml --environment=staging\n```\n2. Publish to testing catalog\n```\ndeep-code publish dataset-config.yaml workflow-config.yaml -e testing\n```\n3. Publish to production catalog\n```\ndeep-code publish dataset-config.yaml workflow-config.yaml\n```\n#### dataset-config.yaml example\n\n```\ndataset_id: esa-cci-permafrost-1x1151x1641-1.0.0.zarr\ncollection_id: esa-cci-permafrost\nosc_themes:\n  - cryosphere\nosc_region: global\n# non-mandatory\ndocumentation_link: https://deepesdl.readthedocs.io/en/latest/datasets/esa-cci-permafrost-1x1151x1641-0-0-2-zarr\naccess_link: s3://deep-esdl-public/esa-cci-permafrost-1x1151x1641-1.0.0.zarr\ndataset_status: completed\n```\n\ndataset-id has to be a valid dataset-id from `deep-esdl-public` s3 bucket or your team \nbucket.\n\n#### workflow-config.yaml example\n\n```\nworkflow_id: \"esa-cci-permafrost\"\nproperties:\n  title: \"ESA CCI permafrost\"\n  description: \"cube generation workflow for esa-cci-permafrost\"\n  keywords:\n    - Earth Science\n  themes:\n      - cryosphere\n  license: proprietary\n  jupyter_kernel_info:\n    name: deepesdl-xcube-1.8.3\n    python_version: 3.11\n    env_file: \"https://github.com/deepesdl/cube-gen/blob/main/Permafrost/environment.yml\"\njupyter_notebook_url: \"https://github.com/deepesdl/cube-gen/blob/main/Permafrost/Create-CCI-Permafrost-cube-EarthCODE.ipynb\"\ncontact:\n  - name: Tejas Morbagal Harish\n    organization: Brockmann Consult GmbH\n    links:\n      - rel: \"about\"\n        type: \"text/html\"\n        href: \"https://www.brockmann-consult.de/\"\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "deepesdl earthcode integration utility tool",
    "version": "0.1.5",
    "project_urls": {
        "Changelog": "https://github.com/deepesdl/deep-code/blob/main/CHANGES.md",
        "Issues": "https://github.com/deepesdl/deep-code/issues",
        "Repository": "https://github.com/deepesdl/deep-code"
    },
    "split_keywords": [
        "analysis ready data",
        " data science",
        " datacube",
        " xarray",
        " zarr",
        " xcube",
        " stac",
        " fair",
        " reproducible workflow",
        " deepesdl"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "9df4bf292c1acf6c42b84b72324ee823e330b515497b55efffa3ee1ae7e25b5f",
                "md5": "1192f6166d25bab623d4e5621da5b7bb",
                "sha256": "315d4603a3da56d3aef3aec1d469905c462103d42fc34da8175910a15c804f73"
            },
            "downloads": -1,
            "filename": "deep_code-0.1.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "1192f6166d25bab623d4e5621da5b7bb",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 44543,
            "upload_time": "2025-08-20T07:25:20",
            "upload_time_iso_8601": "2025-08-20T07:25:20.255380Z",
            "url": "https://files.pythonhosted.org/packages/9d/f4/bf292c1acf6c42b84b72324ee823e330b515497b55efffa3ee1ae7e25b5f/deep_code-0.1.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "1c6e5e159555029d5b6f0eeb7dfd6f1d59fc5a4607c28fef50f8151b6fdcf12a",
                "md5": "f7aec96d89a3aad4768efd17ada5ce72",
                "sha256": "6d61092f73b36240f056bce7892498f1e941831c898718455f0bfd5e27287959"
            },
            "downloads": -1,
            "filename": "deep_code-0.1.5.tar.gz",
            "has_sig": false,
            "md5_digest": "f7aec96d89a3aad4768efd17ada5ce72",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 35400,
            "upload_time": "2025-08-20T07:25:22",
            "upload_time_iso_8601": "2025-08-20T07:25:22.158227Z",
            "url": "https://files.pythonhosted.org/packages/1c/6e/5e159555029d5b6f0eeb7dfd6f1d59fc5a4607c28fef50f8151b6fdcf12a/deep_code-0.1.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-20 07:25:22",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "deepesdl",
    "github_project": "deep-code",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "deep-code"
}
        
Elapsed time: 0.98966s