deep-mab


Namedeep-mab JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/samsonq/contextual-bandits
SummaryContextual MAB algorithms
upload_time2023-07-31 02:36:18
maintainer
docs_urlNone
authorSamson Qian
requires_python>=3.6
licenseMIT
keywords mab deep_mab deep_mab reinforcement-learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Deep Contextual MAB
MAB and linear/non-linear Contextual MAB algorithms.

## Algorithms

#### Multi-Arm Bandits
* [x] Epsilon Greedy
* [x] UCB
* [x] Thompson Sampling

#### Contextual Multi-Arm Bandits
* [x] Neural Net Epsilon Greedy
* [x] LinUCB
* [x] Neural Net UCB

## Usage Instructions
* This project is published on [PyPI](https://pypi.org/project/deep-mab/). To install package, run:

  ```
  pip install deep-mab
  ```
* To run the algorithms, import the package and call the respective functions. For example, to run the LinUCB algorithm, run:

  ```
  from deep_mab.cmab import LinUCB
  model = LinUCB(n_arms=10, alpha=1, fit_intercept=True)
  model.fit(X_train, y_train)
  model.predict(X_test)
  ```
* For more details, refer to the [documentation](https://contextual-bandits.readthedocs.io/en/latest/).
* To run the examples, clone the repository and run the following commands:

  ```
  cd deep-mab
  pip install -r requirements.txt
  python examples/linucb_example.py
  ```
* To run the tests, run the following commands:

  ```
  cd deep-mab
  pip install -r requirements.txt
  pytest
  ```
  

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/samsonq/contextual-bandits",
    "name": "deep-mab",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "mab deep_mab deep_mab reinforcement-learning",
    "author": "Samson Qian",
    "author_email": "samsonqian@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/f5/6b/708399003a99f38f65c2d4bc26abd3c40a184f57faa3fe65e2f18ed33b6c/deep_mab-0.1.1.tar.gz",
    "platform": null,
    "description": "# Deep Contextual MAB\nMAB and linear/non-linear Contextual MAB algorithms.\n\n## Algorithms\n\n#### Multi-Arm Bandits\n* [x] Epsilon Greedy\n* [x] UCB\n* [x] Thompson Sampling\n\n#### Contextual Multi-Arm Bandits\n* [x] Neural Net Epsilon Greedy\n* [x] LinUCB\n* [x] Neural Net UCB\n\n## Usage Instructions\n* This project is published on [PyPI](https://pypi.org/project/deep-mab/). To install package, run:\n\n  ```\n  pip install deep-mab\n  ```\n* To run the algorithms, import the package and call the respective functions. For example, to run the LinUCB algorithm, run:\n\n  ```\n  from deep_mab.cmab import LinUCB\n  model = LinUCB(n_arms=10, alpha=1, fit_intercept=True)\n  model.fit(X_train, y_train)\n  model.predict(X_test)\n  ```\n* For more details, refer to the [documentation](https://contextual-bandits.readthedocs.io/en/latest/).\n* To run the examples, clone the repository and run the following commands:\n\n  ```\n  cd deep-mab\n  pip install -r requirements.txt\n  python examples/linucb_example.py\n  ```\n* To run the tests, run the following commands:\n\n  ```\n  cd deep-mab\n  pip install -r requirements.txt\n  pytest\n  ```\n  \n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Contextual MAB algorithms",
    "version": "0.1.1",
    "project_urls": {
        "Homepage": "https://github.com/samsonq/contextual-bandits"
    },
    "split_keywords": [
        "mab",
        "deep_mab",
        "deep_mab",
        "reinforcement-learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ed0d45d4994f78ab4e09ac023d4df65821e95f238d086a0b0e425e96694ea03f",
                "md5": "6835bbb5e11e7e552abc86ee20446774",
                "sha256": "cea6eeb0c06672999255d9d58809a3d5b1552fd6a6d125e20efbfa5a384cb78c"
            },
            "downloads": -1,
            "filename": "deep_mab-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6835bbb5e11e7e552abc86ee20446774",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 8713,
            "upload_time": "2023-07-31T02:36:16",
            "upload_time_iso_8601": "2023-07-31T02:36:16.712658Z",
            "url": "https://files.pythonhosted.org/packages/ed/0d/45d4994f78ab4e09ac023d4df65821e95f238d086a0b0e425e96694ea03f/deep_mab-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f56b708399003a99f38f65c2d4bc26abd3c40a184f57faa3fe65e2f18ed33b6c",
                "md5": "d7561194e8c309d258d59808f396502c",
                "sha256": "5a039438889be9c04171bc908cbbcf16301dc32584d6dfdd329c69cdcf21ba08"
            },
            "downloads": -1,
            "filename": "deep_mab-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "d7561194e8c309d258d59808f396502c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 6243,
            "upload_time": "2023-07-31T02:36:18",
            "upload_time_iso_8601": "2023-07-31T02:36:18.283181Z",
            "url": "https://files.pythonhosted.org/packages/f5/6b/708399003a99f38f65c2d4bc26abd3c40a184f57faa3fe65e2f18ed33b6c/deep_mab-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-07-31 02:36:18",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "samsonq",
    "github_project": "contextual-bandits",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "deep-mab"
}
        
Elapsed time: 0.18851s