deepproblog


Namedeepproblog JSON
Version 2.0.6 PyPI version JSON
download
home_pagehttps://github.com/ML-KULeuven/deepproblog
SummaryDeepProbLog: Problog with neural networks
upload_time2024-08-09 07:41:04
maintainerNone
docs_urlNone
authorDeepProbLog team
requires_pythonNone
licenseApache Software License
keywords prolog probabilistic logic neural-symbolic problog deepproblog
VCS
bugtrack_url
requirements problog torchvision setuptools torch pysdd
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # DeepProbLog
[![Unit tests](https://github.com/ML-KULeuven/deepproblog/actions/workflows/python-app.yml/badge.svg)](https://github.com/ML-KULeuven/deepproblog/actions/workflows/python-app.yml)

DeepProbLog is an extension of [ProbLog](https://dtai.cs.kuleuven.be/problog/)
that integrates Probabilistic Logic Programming with deep learning by introducing the neural predicate. 
The neural predicate represents probabilistic facts whose probabilites are parameterized by neural networks.
For more information, consult the papers listed below.

## Installation
DeepProbLog can easily be installed using the following command:
Make sure the following packages are installed:
```
pip install deepproblog
```

## Test
To make sure your installation works, install pytest 
```
pip install pytest
````
and run 
```
python -m deepproblog test
```

## Requirements

DeepProbLog has the following requirements:
* Python > 3.9
* [ProbLog](https://dtai.cs.kuleuven.be/problog/)
* [PySDD](https://pysdd.readthedocs.io/en/latest/)
* [PyTorch](https://pytorch.org/)
* [TorchVision](https://pytorch.org/vision/stable/index.html)

## Approximate Inference

To use Approximate Inference, we have the following additional requirements
* [PySwip](https://github.com/ML-KULeuven/pyswip) 
    - Use `pip install git+https://github.com/ML-KULeuven/pyswip`
* [SWI-Prolog < 9.0.0](https://www.swi-prolog.org/)
The latter can be installed on Ubuntu with the following commands:
```
sudo apt-add-repository ppa:swi-prolog/stable
sudo apt install swi-prolog=8.4* swi-prolog-nox=8.4* swi-prolog-x=8.4*
```
## Experiments

The experiments are presented in the papers are available in the [src/deepproblog/examples](src/deepproblog/examples) directory.

## Papers
1. Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, Luc De Raedt:
*DeepProbLog: Neural Probabilistic Logic Programming*. NeurIPS 2018: 3753-3763 ([paper](https://papers.nips.cc/paper/2018/hash/dc5d637ed5e62c36ecb73b654b05ba2a-Abstract.html))
2. Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, Luc De Raedt:
*Neural Probabilistic Logic Programming in DeepProbLog*. AIJ ([paper](https://www.sciencedirect.com/science/article/abs/pii/S0004370221000552))
3. Robin Manhaeve, Giuseppe Marra, Luc De Raedt:
*Approximate Inference for Neural Probabilistic Logic Programming*. KR 2021
## License
Copyright 2023 KU Leuven, DTAI Research Group

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/ML-KULeuven/deepproblog",
    "name": "deepproblog",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "prolog probabilistic logic neural-symbolic problog deepproblog",
    "author": "DeepProbLog team",
    "author_email": "robin.manhaeve@cs.kuleuven.be",
    "download_url": "https://files.pythonhosted.org/packages/c8/a1/7dd13e743bc6914dcdd256b0e5442e187f6fd57d21924c16edd55378b6dd/deepproblog-2.0.6.tar.gz",
    "platform": null,
    "description": "# DeepProbLog\n[![Unit tests](https://github.com/ML-KULeuven/deepproblog/actions/workflows/python-app.yml/badge.svg)](https://github.com/ML-KULeuven/deepproblog/actions/workflows/python-app.yml)\n\nDeepProbLog is an extension of [ProbLog](https://dtai.cs.kuleuven.be/problog/)\nthat integrates Probabilistic Logic Programming with deep learning by introducing the neural predicate. \nThe neural predicate represents probabilistic facts whose probabilites are parameterized by neural networks.\nFor more information, consult the papers listed below.\n\n## Installation\nDeepProbLog can easily be installed using the following command:\nMake sure the following packages are installed:\n```\npip install deepproblog\n```\n\n## Test\nTo make sure your installation works, install pytest \n```\npip install pytest\n````\nand run \n```\npython -m deepproblog test\n```\n\n## Requirements\n\nDeepProbLog has the following requirements:\n* Python > 3.9\n* [ProbLog](https://dtai.cs.kuleuven.be/problog/)\n* [PySDD](https://pysdd.readthedocs.io/en/latest/)\n* [PyTorch](https://pytorch.org/)\n* [TorchVision](https://pytorch.org/vision/stable/index.html)\n\n## Approximate Inference\n\nTo use Approximate Inference, we have the following additional requirements\n* [PySwip](https://github.com/ML-KULeuven/pyswip) \n    - Use `pip install git+https://github.com/ML-KULeuven/pyswip`\n* [SWI-Prolog < 9.0.0](https://www.swi-prolog.org/)\nThe latter can be installed on Ubuntu with the following commands:\n```\nsudo apt-add-repository ppa:swi-prolog/stable\nsudo apt install swi-prolog=8.4* swi-prolog-nox=8.4* swi-prolog-x=8.4*\n```\n## Experiments\n\nThe experiments are presented in the papers are available in the [src/deepproblog/examples](src/deepproblog/examples) directory.\n\n## Papers\n1. Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, Luc De Raedt:\n*DeepProbLog: Neural Probabilistic Logic Programming*. NeurIPS 2018: 3753-3763 ([paper](https://papers.nips.cc/paper/2018/hash/dc5d637ed5e62c36ecb73b654b05ba2a-Abstract.html))\n2. Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, Luc De Raedt:\n*Neural Probabilistic Logic Programming in DeepProbLog*. AIJ ([paper](https://www.sciencedirect.com/science/article/abs/pii/S0004370221000552))\n3. Robin Manhaeve, Giuseppe Marra, Luc De Raedt:\n*Approximate Inference for Neural Probabilistic Logic Programming*. KR 2021\n## License\nCopyright 2023 KU Leuven, DTAI Research Group\n\nLicensed under the Apache License, Version 2.0 (the \"License\"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0\n\nUnless required by applicable law or agreed to in writing, software distributed under the License is distributed on an \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.\n",
    "bugtrack_url": null,
    "license": "Apache Software License",
    "summary": "DeepProbLog: Problog with neural networks",
    "version": "2.0.6",
    "project_urls": {
        "Homepage": "https://github.com/ML-KULeuven/deepproblog"
    },
    "split_keywords": [
        "prolog",
        "probabilistic",
        "logic",
        "neural-symbolic",
        "problog",
        "deepproblog"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "724f51efc9e8bc3f734054dcbf730fdbd5f32a5358e125a2a86e59a800edf356",
                "md5": "4855da0d4e701b49b539bd226e975fbd",
                "sha256": "e341659b7c2a16ca3c8d039398ce986b9a589c6b4b0aa42400ffde4a0cca2c2b"
            },
            "downloads": -1,
            "filename": "deepproblog-2.0.6-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "4855da0d4e701b49b539bd226e975fbd",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 127455,
            "upload_time": "2024-08-09T07:41:02",
            "upload_time_iso_8601": "2024-08-09T07:41:02.938731Z",
            "url": "https://files.pythonhosted.org/packages/72/4f/51efc9e8bc3f734054dcbf730fdbd5f32a5358e125a2a86e59a800edf356/deepproblog-2.0.6-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c8a17dd13e743bc6914dcdd256b0e5442e187f6fd57d21924c16edd55378b6dd",
                "md5": "ca666e67a36e47de9c27feaa288f44a8",
                "sha256": "30cd44d86bccdfea76e1f7ef153b49f3a97deea600a0ffa95fd6664bb4b696c5"
            },
            "downloads": -1,
            "filename": "deepproblog-2.0.6.tar.gz",
            "has_sig": false,
            "md5_digest": "ca666e67a36e47de9c27feaa288f44a8",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 98066,
            "upload_time": "2024-08-09T07:41:04",
            "upload_time_iso_8601": "2024-08-09T07:41:04.918438Z",
            "url": "https://files.pythonhosted.org/packages/c8/a1/7dd13e743bc6914dcdd256b0e5442e187f6fd57d21924c16edd55378b6dd/deepproblog-2.0.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-09 07:41:04",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ML-KULeuven",
    "github_project": "deepproblog",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "problog",
            "specs": []
        },
        {
            "name": "torchvision",
            "specs": []
        },
        {
            "name": "setuptools",
            "specs": []
        },
        {
            "name": "torch",
            "specs": []
        },
        {
            "name": "pysdd",
            "specs": []
        }
    ],
    "lcname": "deepproblog"
}
        
Elapsed time: 0.32885s