deepview-mcp


Namedeepview-mcp JSON
Version 0.2.4 PyPI version JSON
download
home_pageNone
SummaryA Model Context Protocol server for analyzing large codebases using Gemini 2.0
upload_time2025-08-07 09:51:15
maintainerNone
docs_urlNone
authorDmitry Degtyarev
requires_python<4.0,>=3.10
licenseMIT
keywords mcp gemini code-analysis ai ide
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![MseeP.ai Security Assessment Badge](https://mseep.net/pr/ai-1st-deepview-mcp-badge.png)](https://mseep.ai/app/ai-1st-deepview-mcp)

# DeepView MCP

DeepView MCP is a Model Context Protocol server that enables IDEs like Cursor and Windsurf to analyze large codebases using Gemini's extensive context window.

[![PyPI version](https://badge.fury.io/py/deepview-mcp.svg)](https://badge.fury.io/py/deepview-mcp)
[![smithery badge](https://smithery.ai/badge/@ai-1st/deepview-mcp)](https://smithery.ai/server/@ai-1st/deepview-mcp)

## Features

- Load an entire codebase from a single text file (e.g., created with tools like repomix)
- Query the codebase using Gemini's large context window
- Connect to IDEs that support the MCP protocol, like Cursor and Windsurf
- Configurable Gemini model selection via command-line arguments

## Prerequisites

- Python 3.13+
- Gemini API key from [Google AI Studio](https://aistudio.google.com/)

## Installation

### Installing via Smithery

To install DeepView for Claude Desktop automatically via [Smithery](https://smithery.ai/server/@ai-1st/deepview-mcp):

```bash
npx -y @smithery/cli install @ai-1st/deepview-mcp --client claude
```

### Using pip

```bash
pip install deepview-mcp
```

## Usage

### Starting the Server

Note: you don't need to start the server manually. These parameters are configured in your MCP setup in your IDE (see below).

```bash
# Basic usage with default settings
deepview-mcp [path/to/codebase.txt]

# Specify a different Gemini model
deepview-mcp [path/to/codebase.txt] --model gemini-2.0-pro

# Change log level
deepview-mcp [path/to/codebase.txt] --log-level DEBUG
```

The codebase file parameter is optional. If not provided, you'll need to specify it when making queries.

### Command-line Options

- `--model MODEL`: Specify the Gemini model to use (default: gemini-2.0-flash-lite)
- `--log-level {DEBUG,INFO,WARNING,ERROR,CRITICAL}`: Set the logging level (default: INFO)

### Using with an IDE (Cursor/Windsurf/...)

1. Open IDE settings
2. Navigate to the MCP configuration
3. Add a new MCP server with the following configuration:
   ```json
   {
     "mcpServers": {
       "deepview": {
         "command": "/path/to/deepview-mcp",
         "args": [],
         "env": {
           "GEMINI_API_KEY": "your_gemini_api_key"
         }
       }
     }
   }

Setting a codebase file is optional. If you are working with the same codebase, you can set the default codebase file using the following configuration:
  ```json
  {
     "mcpServers": {
       "deepview": {
         "command": "/path/to/deepview-mcp",
         "args": ["/path/to/codebase.txt"],
         "env": {
           "GEMINI_API_KEY": "your_gemini_api_key"
         }
       }
     }
   }
  ```

Here's how to specify the Gemini version to use:

```json
{
   "mcpServers": {
     "deepview": {
       "command": "/path/to/deepview-mcp",
       "args": ["--model", "gemini-2.5-pro-exp-03-25"],
       "env": {
         "GEMINI_API_KEY": "your_gemini_api_key"
       }
     }
   }
}
```

4. Reload MCP servers configuration


### Available Tools

The server provides one tool:

1. `deepview`: Ask a question about the codebase
   - Required parameter: `question` - The question to ask about the codebase
   - Optional parameter: `codebase_file` - Path to a codebase file to load before querying

## Preparing Your Codebase

DeepView MCP requires a single file containing your entire codebase. You can use [repomix](https://github.com/yamadashy/repomix) to prepare your codebase in an AI-friendly format.

### Using repomix

1. **Basic Usage**: Run repomix in your project directory to create a default output file:

```bash
# Make sure you're using Node.js 18.17.0 or higher
npx repomix
```

This will generate a `repomix-output.xml` file containing your codebase.

2. **Custom Configuration**: Create a configuration file to customize which files get packaged and the output format:

```bash
npx repomix --init
```

This creates a `repomix.config.json` file that you can edit to:
- Include/exclude specific files or directories
- Change the output format (XML, JSON, TXT)
- Set the output filename
- Configure other packaging options

### Example repomix Configuration

Here's an example `repomix.config.json` file:

```json
{
  "include": [
    "**/*.py",
    "**/*.js",
    "**/*.ts",
    "**/*.jsx",
    "**/*.tsx"
  ],
  "exclude": [
    "node_modules/**",
    "venv/**",
    "**/__pycache__/**",
    "**/test/**"
  ],
  "output": {
    "format": "xml",
    "filename": "my-codebase.xml"
  }
}
```

For more information on repomix, visit the [repomix GitHub repository](https://github.com/yamadashy/repomix).

## License

MIT

## Author

Dmitry Degtyarev (ddegtyarev@gmail.com)


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "deepview-mcp",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": null,
    "keywords": "mcp, gemini, code-analysis, ai, ide",
    "author": "Dmitry Degtyarev",
    "author_email": "ddegtyarev@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/c3/a3/c1b239faa2e26cc1ede2ae02beec5f9c1abb83aa5443ed4e86ac4712cce4/deepview_mcp-0.2.4.tar.gz",
    "platform": null,
    "description": "[![MseeP.ai Security Assessment Badge](https://mseep.net/pr/ai-1st-deepview-mcp-badge.png)](https://mseep.ai/app/ai-1st-deepview-mcp)\n\n# DeepView MCP\n\nDeepView MCP is a Model Context Protocol server that enables IDEs like Cursor and Windsurf to analyze large codebases using Gemini's extensive context window.\n\n[![PyPI version](https://badge.fury.io/py/deepview-mcp.svg)](https://badge.fury.io/py/deepview-mcp)\n[![smithery badge](https://smithery.ai/badge/@ai-1st/deepview-mcp)](https://smithery.ai/server/@ai-1st/deepview-mcp)\n\n## Features\n\n- Load an entire codebase from a single text file (e.g., created with tools like repomix)\n- Query the codebase using Gemini's large context window\n- Connect to IDEs that support the MCP protocol, like Cursor and Windsurf\n- Configurable Gemini model selection via command-line arguments\n\n## Prerequisites\n\n- Python 3.13+\n- Gemini API key from [Google AI Studio](https://aistudio.google.com/)\n\n## Installation\n\n### Installing via Smithery\n\nTo install DeepView for Claude Desktop automatically via [Smithery](https://smithery.ai/server/@ai-1st/deepview-mcp):\n\n```bash\nnpx -y @smithery/cli install @ai-1st/deepview-mcp --client claude\n```\n\n### Using pip\n\n```bash\npip install deepview-mcp\n```\n\n## Usage\n\n### Starting the Server\n\nNote: you don't need to start the server manually. These parameters are configured in your MCP setup in your IDE (see below).\n\n```bash\n# Basic usage with default settings\ndeepview-mcp [path/to/codebase.txt]\n\n# Specify a different Gemini model\ndeepview-mcp [path/to/codebase.txt] --model gemini-2.0-pro\n\n# Change log level\ndeepview-mcp [path/to/codebase.txt] --log-level DEBUG\n```\n\nThe codebase file parameter is optional. If not provided, you'll need to specify it when making queries.\n\n### Command-line Options\n\n- `--model MODEL`: Specify the Gemini model to use (default: gemini-2.0-flash-lite)\n- `--log-level {DEBUG,INFO,WARNING,ERROR,CRITICAL}`: Set the logging level (default: INFO)\n\n### Using with an IDE (Cursor/Windsurf/...)\n\n1. Open IDE settings\n2. Navigate to the MCP configuration\n3. Add a new MCP server with the following configuration:\n   ```json\n   {\n     \"mcpServers\": {\n       \"deepview\": {\n         \"command\": \"/path/to/deepview-mcp\",\n         \"args\": [],\n         \"env\": {\n           \"GEMINI_API_KEY\": \"your_gemini_api_key\"\n         }\n       }\n     }\n   }\n\nSetting a codebase file is optional. If you are working with the same codebase, you can set the default codebase file using the following configuration:\n  ```json\n  {\n     \"mcpServers\": {\n       \"deepview\": {\n         \"command\": \"/path/to/deepview-mcp\",\n         \"args\": [\"/path/to/codebase.txt\"],\n         \"env\": {\n           \"GEMINI_API_KEY\": \"your_gemini_api_key\"\n         }\n       }\n     }\n   }\n  ```\n\nHere's how to specify the Gemini version to use:\n\n```json\n{\n   \"mcpServers\": {\n     \"deepview\": {\n       \"command\": \"/path/to/deepview-mcp\",\n       \"args\": [\"--model\", \"gemini-2.5-pro-exp-03-25\"],\n       \"env\": {\n         \"GEMINI_API_KEY\": \"your_gemini_api_key\"\n       }\n     }\n   }\n}\n```\n\n4. Reload MCP servers configuration\n\n\n### Available Tools\n\nThe server provides one tool:\n\n1. `deepview`: Ask a question about the codebase\n   - Required parameter: `question` - The question to ask about the codebase\n   - Optional parameter: `codebase_file` - Path to a codebase file to load before querying\n\n## Preparing Your Codebase\n\nDeepView MCP requires a single file containing your entire codebase. You can use [repomix](https://github.com/yamadashy/repomix) to prepare your codebase in an AI-friendly format.\n\n### Using repomix\n\n1. **Basic Usage**: Run repomix in your project directory to create a default output file:\n\n```bash\n# Make sure you're using Node.js 18.17.0 or higher\nnpx repomix\n```\n\nThis will generate a `repomix-output.xml` file containing your codebase.\n\n2. **Custom Configuration**: Create a configuration file to customize which files get packaged and the output format:\n\n```bash\nnpx repomix --init\n```\n\nThis creates a `repomix.config.json` file that you can edit to:\n- Include/exclude specific files or directories\n- Change the output format (XML, JSON, TXT)\n- Set the output filename\n- Configure other packaging options\n\n### Example repomix Configuration\n\nHere's an example `repomix.config.json` file:\n\n```json\n{\n  \"include\": [\n    \"**/*.py\",\n    \"**/*.js\",\n    \"**/*.ts\",\n    \"**/*.jsx\",\n    \"**/*.tsx\"\n  ],\n  \"exclude\": [\n    \"node_modules/**\",\n    \"venv/**\",\n    \"**/__pycache__/**\",\n    \"**/test/**\"\n  ],\n  \"output\": {\n    \"format\": \"xml\",\n    \"filename\": \"my-codebase.xml\"\n  }\n}\n```\n\nFor more information on repomix, visit the [repomix GitHub repository](https://github.com/yamadashy/repomix).\n\n## License\n\nMIT\n\n## Author\n\nDmitry Degtyarev (ddegtyarev@gmail.com)\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A Model Context Protocol server for analyzing large codebases using Gemini 2.0",
    "version": "0.2.4",
    "project_urls": {
        "Repository": "https://github.com/ddegtyarev/deepview-mcp"
    },
    "split_keywords": [
        "mcp",
        " gemini",
        " code-analysis",
        " ai",
        " ide"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "e2699c9885e3ce7c9d38bab42eb71bf9831205cd496af8b2d2f1be10278e9bf6",
                "md5": "ac9d9d4e4d93783aa811cc5eabcce1aa",
                "sha256": "e6c1e8521f53bdd82ad6006a82a19ecaf352cc9553ecba812aecfdb833ae4dc9"
            },
            "downloads": -1,
            "filename": "deepview_mcp-0.2.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ac9d9d4e4d93783aa811cc5eabcce1aa",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 8934,
            "upload_time": "2025-08-07T09:51:14",
            "upload_time_iso_8601": "2025-08-07T09:51:14.189869Z",
            "url": "https://files.pythonhosted.org/packages/e2/69/9c9885e3ce7c9d38bab42eb71bf9831205cd496af8b2d2f1be10278e9bf6/deepview_mcp-0.2.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c3a3c1b239faa2e26cc1ede2ae02beec5f9c1abb83aa5443ed4e86ac4712cce4",
                "md5": "200c8537d32c91a4c5219cdeda28a2c7",
                "sha256": "085d5c3e81037e5fd5601d7e267445420cfbaa2cff7cf0b9e718827c03d7f9c1"
            },
            "downloads": -1,
            "filename": "deepview_mcp-0.2.4.tar.gz",
            "has_sig": false,
            "md5_digest": "200c8537d32c91a4c5219cdeda28a2c7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 6633,
            "upload_time": "2025-08-07T09:51:15",
            "upload_time_iso_8601": "2025-08-07T09:51:15.127171Z",
            "url": "https://files.pythonhosted.org/packages/c3/a3/c1b239faa2e26cc1ede2ae02beec5f9c1abb83aa5443ed4e86ac4712cce4/deepview_mcp-0.2.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-07 09:51:15",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ddegtyarev",
    "github_project": "deepview-mcp",
    "github_not_found": true,
    "lcname": "deepview-mcp"
}
        
Elapsed time: 1.94546s