# DefectPl
A unified package to calculate and plot optical properties of point defects in insulators and semiconductors.
[![image](https://img.shields.io/pypi/v/defectpl.svg)](https://pypi.python.org/pypi/defectpl)
[![Downloads](https://static.pepy.tech/badge/defectpl)](https://pepy.tech/project/defectpl)
[![Conda Recipe](https://img.shields.io/badge/recipe-defectpl-green.svg)](https://github.com/conda-forge/defectpl-feedstock)
[![Anaconda](https://anaconda.org/conda-forge/defectpl/badges/version.svg)](https://anaconda.org/conda-forge/defectpl)
[![image](https://img.shields.io/conda/vn/conda-forge/defectpl.svg)](https://anaconda.org/conda-forge/defectpl)
[![Conda Downloads](https://img.shields.io/conda/dn/conda-forge/defectpl.svg)](https://anaconda.org/conda-forge/defectpl)
[![image](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
#### Purpose of the Package
The purpose of this package is to calculate the intensity of photoluminescence from point defects in solids with method described in New J. Phys. 16 (2014) 073026. It also calculates and plot other relevant quantities like partial Huang Rhys factor, inverse participation ratio etc.
### Documentation
For documentation check : https://Shibu778.github.io/defectpl/
### Getting Started
The package can be found in pypi. You can install it using `pip`.
#### Installation
```bash
pip install defectpl
```
Using `conda`
```bash
conda install conda-forge::defectpl
```
Using the GitHub clone
```bash
git clone https://github.com/Shibu778/defectpl.git
cd defectpl/defectpl
pip install -e .
```
### Usage
Following is an example usage with the data stored in `tests/data` for NV center in diamond.
```python
from defectpl.defectpl import DefectPl
band_yaml = "../tests/data/band.yaml"
contcar_gs = "../tests/data/CONTCAR_gs"
contcar_es = "../tests/data/CONTCAR_es"
out_dir = "./plots"
EZPL = 1.95
gamma = 2
plot_all = True
iplot_xlim = [1000, 2000]
defctpl = DefectPl(
band_yaml,
contcar_gs,
contcar_es,
EZPL,
gamma,
iplot_xlim=iplot_xlim,
plot_all=plot_all,
out_dir=out_dir,
)
```
### Contribution
Contributions are welcome.
Notice a bug let us know. Thanks.
### Author
Main Maintainer: Shibu Meher
Raw data
{
"_id": null,
"home_page": "https://github.com/Shibu778/defectpl",
"name": "defectpl",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.11",
"maintainer_email": null,
"keywords": "defects, optical properties, point defects, DFT, VASP, pymatgen",
"author": "Shibu Meher",
"author_email": "shibumeher@iisc.ac.in",
"download_url": "https://files.pythonhosted.org/packages/0a/32/dd6d246bc08c9fd4378488bd27cdb23975a698f122d687d99ba16ec65ae2/defectpl-0.1.2.tar.gz",
"platform": null,
"description": "# DefectPl\nA unified package to calculate and plot optical properties of point defects in insulators and semiconductors.\n\n[![image](https://img.shields.io/pypi/v/defectpl.svg)](https://pypi.python.org/pypi/defectpl)\n[![Downloads](https://static.pepy.tech/badge/defectpl)](https://pepy.tech/project/defectpl)\n[![Conda Recipe](https://img.shields.io/badge/recipe-defectpl-green.svg)](https://github.com/conda-forge/defectpl-feedstock)\n[![Anaconda](https://anaconda.org/conda-forge/defectpl/badges/version.svg)](https://anaconda.org/conda-forge/defectpl)\n[![image](https://img.shields.io/conda/vn/conda-forge/defectpl.svg)](https://anaconda.org/conda-forge/defectpl)\n[![Conda Downloads](https://img.shields.io/conda/dn/conda-forge/defectpl.svg)](https://anaconda.org/conda-forge/defectpl)\n[![image](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n\n#### Purpose of the Package\nThe purpose of this package is to calculate the intensity of photoluminescence from point defects in solids with method described in New J. Phys. 16 (2014) 073026. It also calculates and plot other relevant quantities like partial Huang Rhys factor, inverse participation ratio etc.\n\n### Documentation\nFor documentation check : https://Shibu778.github.io/defectpl/\n\n### Getting Started\nThe package can be found in pypi. You can install it using `pip`.\n\n#### Installation\n\n```bash\npip install defectpl\n```\n\nUsing `conda`\n```bash\nconda install conda-forge::defectpl\n```\n\nUsing the GitHub clone\n\n```bash\ngit clone https://github.com/Shibu778/defectpl.git\ncd defectpl/defectpl\npip install -e .\n```\n\n### Usage\n\nFollowing is an example usage with the data stored in `tests/data` for NV center in diamond.\n```python\nfrom defectpl.defectpl import DefectPl\n\nband_yaml = \"../tests/data/band.yaml\"\ncontcar_gs = \"../tests/data/CONTCAR_gs\"\ncontcar_es = \"../tests/data/CONTCAR_es\"\nout_dir = \"./plots\"\nEZPL = 1.95\ngamma = 2\nplot_all = True\niplot_xlim = [1000, 2000]\n\ndefctpl = DefectPl(\n band_yaml,\n contcar_gs,\n contcar_es,\n EZPL,\n gamma,\n iplot_xlim=iplot_xlim,\n plot_all=plot_all,\n out_dir=out_dir,\n)\n```\n\n### Contribution\nContributions are welcome.\nNotice a bug let us know. Thanks.\n\n### Author\nMain Maintainer: Shibu Meher",
"bugtrack_url": null,
"license": "MIT",
"summary": "A unified package for optical properties of point defects.",
"version": "0.1.2",
"project_urls": {
"Documentation": "https://Shibu778.github.io/defectpl/",
"Homepage": "https://github.com/Shibu778/defectpl",
"Repository": "https://github.com/Shibu778/defectpl"
},
"split_keywords": [
"defects",
" optical properties",
" point defects",
" dft",
" vasp",
" pymatgen"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "444e7776d3ccc4f8d0b2605e0b507f56d3faafec092c04731b871525b4fb8fe8",
"md5": "31fe310f9866021f98337de2c9c171b2",
"sha256": "a98e179404d6ad74f090a429eb4cec8fa103b49514de9fd29852f5513d3b8423"
},
"downloads": -1,
"filename": "defectpl-0.1.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "31fe310f9866021f98337de2c9c171b2",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.11",
"size": 10209,
"upload_time": "2024-10-31T11:24:30",
"upload_time_iso_8601": "2024-10-31T11:24:30.033108Z",
"url": "https://files.pythonhosted.org/packages/44/4e/7776d3ccc4f8d0b2605e0b507f56d3faafec092c04731b871525b4fb8fe8/defectpl-0.1.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "0a32dd6d246bc08c9fd4378488bd27cdb23975a698f122d687d99ba16ec65ae2",
"md5": "a7fed9596e890d1001868cafd6c427b2",
"sha256": "de8e0b85743474554a38c0797c5db81f8d616c93c3f33679a4cd4eaab4495944"
},
"downloads": -1,
"filename": "defectpl-0.1.2.tar.gz",
"has_sig": false,
"md5_digest": "a7fed9596e890d1001868cafd6c427b2",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.11",
"size": 9840,
"upload_time": "2024-10-31T11:24:31",
"upload_time_iso_8601": "2024-10-31T11:24:31.578320Z",
"url": "https://files.pythonhosted.org/packages/0a/32/dd6d246bc08c9fd4378488bd27cdb23975a698f122d687d99ba16ec65ae2/defectpl-0.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-31 11:24:31",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Shibu778",
"github_project": "defectpl",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "defectpl"
}