deid


Namedeid JSON
Version 0.3.24 PyPI version JSON
download
home_pagehttps://github.com/pydicom/deid
Summarybest effort deidentify dicom with python and pydicom
upload_time2024-09-05 18:30:31
maintainerNone
docs_urlNone
authorVanessa Sochat
requires_python>=3.7
licenseLICENSE
keywords open source python anonymize dicom
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            # Deidentify (deid)

Best effort anonymization for medical images in Python.

[![DOI](https://zenodo.org/badge/94163984.svg)](https://zenodo.org/badge/latestdoi/94163984)
[![Build Status](https://travis-ci.org/pydicom/deid.svg?branch=master)](https://travis-ci.org/pydicom/deid)

Please see our [Documentation](https://pydicom.github.io/deid/).

These are basic Python based tools for working with medical images and text, specifically for de-identification.
The cleaning method used here mirrors the one by CTP in that we can identify images based on known
locations. We are looking for collaborators to develop and validate an OCR cleaning method! Please reach out if you would like to help work on this.


## Installation

### Local
For the stable release, install via pip:

```bash
pip install deid
```

For the development version, install from Github:

```bash
pip install git+git://github.com/pydicom/deid
```

### Docker

```bash
docker build -t pydicom/deid .
docker run pydicom/deid --help
```

## Issues
If you have an issue, or want to request a feature, please do so on our [issues board](https://www.github.com/pydicom/deid/issues).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pydicom/deid",
    "name": "deid",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "open source, python, anonymize, dicom",
    "author": "Vanessa Sochat",
    "author_email": "vsoch@users.noreply.github.com",
    "download_url": "https://files.pythonhosted.org/packages/fb/9f/c25a68c5a11273b6bf9171371eba5da23c1896f28e9d8aed508a9efff148/deid-0.3.24.tar.gz",
    "platform": null,
    "description": "# Deidentify (deid)\n\nBest effort anonymization for medical images in Python.\n\n[![DOI](https://zenodo.org/badge/94163984.svg)](https://zenodo.org/badge/latestdoi/94163984)\n[![Build Status](https://travis-ci.org/pydicom/deid.svg?branch=master)](https://travis-ci.org/pydicom/deid)\n\nPlease see our [Documentation](https://pydicom.github.io/deid/).\n\nThese are basic Python based tools for working with medical images and text, specifically for de-identification.\nThe cleaning method used here mirrors the one by CTP in that we can identify images based on known\nlocations. We are looking for collaborators to develop and validate an OCR cleaning method! Please reach out if you would like to help work on this.\n\n\n## Installation\n\n### Local\nFor the stable release, install via pip:\n\n```bash\npip install deid\n```\n\nFor the development version, install from Github:\n\n```bash\npip install git+git://github.com/pydicom/deid\n```\n\n### Docker\n\n```bash\ndocker build -t pydicom/deid .\ndocker run pydicom/deid --help\n```\n\n## Issues\nIf you have an issue, or want to request a feature, please do so on our [issues board](https://www.github.com/pydicom/deid/issues).\n",
    "bugtrack_url": null,
    "license": "LICENSE",
    "summary": "best effort deidentify dicom with python and pydicom",
    "version": "0.3.24",
    "project_urls": {
        "Homepage": "https://github.com/pydicom/deid"
    },
    "split_keywords": [
        "open source",
        " python",
        " anonymize",
        " dicom"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cc097fac4c2a2ff3fee212af4d25b6c579151bf7498fc2da9cce0be830dde85b",
                "md5": "0072ed3e0731399168bd3c92eafb68b0",
                "sha256": "0cdfbdc3393a41a8959051128e6f3f4f0cf031057706d0efc7a06f458fb9e13b"
            },
            "downloads": -1,
            "filename": "deid-0.3.24-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "0072ed3e0731399168bd3c92eafb68b0",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 94397,
            "upload_time": "2024-09-05T18:30:29",
            "upload_time_iso_8601": "2024-09-05T18:30:29.882603Z",
            "url": "https://files.pythonhosted.org/packages/cc/09/7fac4c2a2ff3fee212af4d25b6c579151bf7498fc2da9cce0be830dde85b/deid-0.3.24-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fb9fc25a68c5a11273b6bf9171371eba5da23c1896f28e9d8aed508a9efff148",
                "md5": "d6082e1a1d7bad9c677ef57073312084",
                "sha256": "04e6b7ae0612b5faeaa09006fe8d6b1ca678ef33a6a47f411eddb3a08213ed81"
            },
            "downloads": -1,
            "filename": "deid-0.3.24.tar.gz",
            "has_sig": false,
            "md5_digest": "d6082e1a1d7bad9c677ef57073312084",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 50780,
            "upload_time": "2024-09-05T18:30:31",
            "upload_time_iso_8601": "2024-09-05T18:30:31.405015Z",
            "url": "https://files.pythonhosted.org/packages/fb/9f/c25a68c5a11273b6bf9171371eba5da23c1896f28e9d8aed508a9efff148/deid-0.3.24.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-05 18:30:31",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pydicom",
    "github_project": "deid",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": true,
    "lcname": "deid"
}
        
Elapsed time: 0.32394s