delitoolkit


Namedelitoolkit JSON
Version 0.3.9 PyPI version JSON
download
home_pagehttps://github.com/gkaradzhov/delitoolkit
SummaryA toolkit for evaluating deliberative discussions and building DEliBots. For more details see delibot.xyz
upload_time2024-01-16 10:42:58
maintainer
docs_urlNone
authorGeorgi Karadzhov
requires_python>=3.6
licenseApache Software License 2.0
keywords delitoolkit
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            delitoolkit
===========

A toolkit for evaluating deliberative discussions and building DEliBots.
For more details see https://delibot.xyz



Install
-------

Please install the latest version from PyPi, preferably in a virtual environment of choice.

::

    pip install delitoolkit

Usage
-----

DeliAnnotation
--------------

This module gives access to classifiers trained to annotate deliberative
discussions. The classifier predicts the first 2 levels from the
DeliAnnotate annotation scheme. Please refer to the original paper for
usage, annotation description, guidelines, classification architecture
and performance: `link <#deliannotation-module>`__.

::

   from delitoolkit import deliannotate

   deli_predictor = deliannotate.DeliAnnotationPredictor()

   type, role = deli_predictor.predict("What about A")

Cause of change of mind predictor (aka conversational turning points or inflection points)
------------------------------------------------------------------------------------------

This module gives access to classifiers trained to predict which
utterances in a collaborative conversation can cause someone to change
their mind. Please refer to the original paper for usage, classification
architecture and performance `link <#inflection-point-module>`__.
Currently delitoolkit provides API to an enhanced Bag-of-words model,
with slightly better performance than the one in the original paper. The
classifier relies only on linguistic data, without incorporating any
other datastreams (and thus is applicable to wider-range of tasks).
Please provide conversation context of at least 2 utterances for best
performance.

::

   from delitoolkit.inflection_point import bow

   predictor = bow.BoWSimple()

   print(predictor.predict_proba(["Hi", "I think 3"]))

DeliData
--------

Easy way to access the contents of
`DeliData <#deliannotation-module>`__. Contains 500 deliberative
discussions of groups solving the Wason card selection task. Each
utterance is augmented with additional data, such as annotation,
solutions, and approximation of team performance. For full information,
please refer to the DeliData paper and DELIDATA_README.md

::

   from delitoolkit.delidata import DeliData


   delidata_corpus = DeliData()
   groups = list(delidata_corpus.corpus.keys())
   for m in delidata_corpus.corpus[groups[0]]:
       print(m['message_type'], m['original_text'])

Relevant papers and BibTeX citations
------------------------------------

DeliAnnotation module
~~~~~~~~~~~~~~~~~~~~~

**DeliData A dataset for deliberation in multi-party problem solving
(https://delibot.xyz/delidata)**

::

   @article{karadzhov2023delidata,
       title={DeliData: A dataset for deliberation in multi-party problem solving},
       author={Karadzhov, Georgi and Stafford, Tom and Vlachos, Andreas},
       journal={Proceedings of the ACM on Human-Computer Interaction},
       volume={7},
       number={CSCW2},
       pages={1--25},
       year={2023},
       publisher={ACM New York, NY, USA}
     }

Inflection point module
~~~~~~~~~~~~~~~~~~~~~~~

**What makes you change your mind? An empirical investigation in online
group decision-making conversations**

::

     @inproceedings{karadzhov2022makes,
       title={What makes you change your mind? An empirical investigation in online group decision-making conversations},
       author={Karadzhov, Georgi and Stafford, Tom and Vlachos, Andreas},
       booktitle={Proceedings of the 23rd Annual Meeting of the Special Interest Group on Discourse and Dialogue},
       pages={552--563},
       year={2022}
     }


=======
History
=======

0.3.9 (16.01.2024)
------------------

* First release on PyPI.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/gkaradzhov/delitoolkit",
    "name": "delitoolkit",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "delitoolkit",
    "author": "Georgi Karadzhov",
    "author_email": "georgi.m.karadjov@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/16/5f/fdf7013c422387df2f9918c0f4d9729ea3869ea4aaedec163d7e5a246fc3/delitoolkit-0.3.9.tar.gz",
    "platform": null,
    "description": "delitoolkit\n===========\n\nA toolkit for evaluating deliberative discussions and building DEliBots.\nFor more details see https://delibot.xyz\n\n\n\nInstall\n-------\n\nPlease install the latest version from PyPi, preferably in a virtual environment of choice.\n\n::\n\n    pip install delitoolkit\n\nUsage\n-----\n\nDeliAnnotation\n--------------\n\nThis module gives access to classifiers trained to annotate deliberative\ndiscussions. The classifier predicts the first 2 levels from the\nDeliAnnotate annotation scheme. Please refer to the original paper for\nusage, annotation description, guidelines, classification architecture\nand performance: `link <#deliannotation-module>`__.\n\n::\n\n   from delitoolkit import deliannotate\n\n   deli_predictor = deliannotate.DeliAnnotationPredictor()\n\n   type, role = deli_predictor.predict(\"What about A\")\n\nCause of change of mind predictor (aka conversational turning points or inflection points)\n------------------------------------------------------------------------------------------\n\nThis module gives access to classifiers trained to predict which\nutterances in a collaborative conversation can cause someone to change\ntheir mind. Please refer to the original paper for usage, classification\narchitecture and performance `link <#inflection-point-module>`__.\nCurrently delitoolkit provides API to an enhanced Bag-of-words model,\nwith slightly better performance than the one in the original paper. The\nclassifier relies only on linguistic data, without incorporating any\nother datastreams (and thus is applicable to wider-range of tasks).\nPlease provide conversation context of at least 2 utterances for best\nperformance.\n\n::\n\n   from delitoolkit.inflection_point import bow\n\n   predictor = bow.BoWSimple()\n\n   print(predictor.predict_proba([\"Hi\", \"I think 3\"]))\n\nDeliData\n--------\n\nEasy way to access the contents of\n`DeliData <#deliannotation-module>`__. Contains 500 deliberative\ndiscussions of groups solving the Wason card selection task. Each\nutterance is augmented with additional data, such as annotation,\nsolutions, and approximation of team performance. For full information,\nplease refer to the DeliData paper and DELIDATA_README.md\n\n::\n\n   from delitoolkit.delidata import DeliData\n\n\n   delidata_corpus = DeliData()\n   groups = list(delidata_corpus.corpus.keys())\n   for m in delidata_corpus.corpus[groups[0]]:\n       print(m['message_type'], m['original_text'])\n\nRelevant papers and BibTeX citations\n------------------------------------\n\nDeliAnnotation module\n~~~~~~~~~~~~~~~~~~~~~\n\n**DeliData A dataset for deliberation in multi-party problem solving\n(https://delibot.xyz/delidata)**\n\n::\n\n   @article{karadzhov2023delidata,\n       title={DeliData: A dataset for deliberation in multi-party problem solving},\n       author={Karadzhov, Georgi and Stafford, Tom and Vlachos, Andreas},\n       journal={Proceedings of the ACM on Human-Computer Interaction},\n       volume={7},\n       number={CSCW2},\n       pages={1--25},\n       year={2023},\n       publisher={ACM New York, NY, USA}\n     }\n\nInflection point module\n~~~~~~~~~~~~~~~~~~~~~~~\n\n**What makes you change your mind? An empirical investigation in online\ngroup decision-making conversations**\n\n::\n\n     @inproceedings{karadzhov2022makes,\n       title={What makes you change your mind? An empirical investigation in online group decision-making conversations},\n       author={Karadzhov, Georgi and Stafford, Tom and Vlachos, Andreas},\n       booktitle={Proceedings of the 23rd Annual Meeting of the Special Interest Group on Discourse and Dialogue},\n       pages={552--563},\n       year={2022}\n     }\n\n\n=======\nHistory\n=======\n\n0.3.9 (16.01.2024)\n------------------\n\n* First release on PyPI.\n",
    "bugtrack_url": null,
    "license": "Apache Software License 2.0",
    "summary": "A toolkit for evaluating deliberative discussions and building DEliBots. For more details see delibot.xyz",
    "version": "0.3.9",
    "project_urls": {
        "Homepage": "https://github.com/gkaradzhov/delitoolkit"
    },
    "split_keywords": [
        "delitoolkit"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "835ca777c437fc2dc2270a316a3e476d01d899851fc75cd57779de4af6464b00",
                "md5": "5e1c64f16915831e4b0640529d7a6273",
                "sha256": "5cef958e6343aeb53688c44a0c5311f6837958e62441e3c86f567faad605f689"
            },
            "downloads": -1,
            "filename": "delitoolkit-0.3.9-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "5e1c64f16915831e4b0640529d7a6273",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": ">=3.6",
            "size": 6894706,
            "upload_time": "2024-01-16T10:42:02",
            "upload_time_iso_8601": "2024-01-16T10:42:02.657425Z",
            "url": "https://files.pythonhosted.org/packages/83/5c/a777c437fc2dc2270a316a3e476d01d899851fc75cd57779de4af6464b00/delitoolkit-0.3.9-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "165ffdf7013c422387df2f9918c0f4d9729ea3869ea4aaedec163d7e5a246fc3",
                "md5": "f42281bb05b8c964f7351aa501afbefc",
                "sha256": "3758a2b251bf6a67e8229c986b67a2ff18635212f53520c43ab96a3ac3ca171d"
            },
            "downloads": -1,
            "filename": "delitoolkit-0.3.9.tar.gz",
            "has_sig": false,
            "md5_digest": "f42281bb05b8c964f7351aa501afbefc",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 6608542,
            "upload_time": "2024-01-16T10:42:58",
            "upload_time_iso_8601": "2024-01-16T10:42:58.747578Z",
            "url": "https://files.pythonhosted.org/packages/16/5f/fdf7013c422387df2f9918c0f4d9729ea3869ea4aaedec163d7e5a246fc3/delitoolkit-0.3.9.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-16 10:42:58",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "gkaradzhov",
    "github_project": "delitoolkit",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "tox": true,
    "lcname": "delitoolkit"
}
        
Elapsed time: 0.32141s