# DeLTA
DeLTA (Deep Learning for Time-lapse Analysis) is a deep learning-based image processing pipeline for segmenting and tracking single cells in time-lapse microscopy movies.

:scroll: To get started check out the documentation at [delta.readthedocs.io](https://delta.readthedocs.io)
:bug: If you encounter bugs or have questions about the software, please use [Gitlab's issue system](https://gitlab.com/delta-microscopy/delta/-/issues)
You can also quickly test DeLTA on our data or your own with Google Colab
for free [here](https://colab.research.google.com/drive/1WsOydKSMX2ANl441JGkpQfFLrUjmwNAS?usp=sharing)
---
See also our papers for more details:
Version 2: [O’Connor OM, Alnahhas RN, Lugagne J-B, Dunlop MJ (2022) DeLTA 2.0: A deep learning pipeline for quantifying single-cell spatial and temporal dynamics. _PLoS Comput Biol_ 18(1): e1009797](https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009797)
Version 1:
[Lugagne J-B, Lin H, & Dunlop MJ (2020) DeLTA: Automated cell segmentation, tracking, and lineage reconstruction using deep learning. _PLoS Comput Biol_ 16(4): e1007673](https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007673)
---
## Contributions
A big thank you to the following people who shared their data and training
sets with us, they help us make DeLTA more generalizable:
- [Simon van Vliet](https://vanvlietlab.ch/) at University of Basel
- [Zoran Marinković](https://scholar.google.com/citations?user=FKKQ64oAAAAJ&hl=en) and [Marianne Grognot](https://scholar.google.com/citations?user=vT4Tr-kAAAAJ&hl=en) in [Philippe Nghe's group](https://scholar.google.com/citations?user=MF7e9eAAAAAJ&hl=en) at ESPCI Paris
- [Noah Olsman](http://nolsman.com/) and [Daniel Eaton](https://paulsson.med.harvard.edu/people/daniel-eaton) in [Johan Paulsson's group](https://paulsson.med.harvard.edu/) at Harvard
- [Shuai Yang](http://jin.isynbio.siat.ac.cn/wordpress/?p=476) in [Fan Jin's group](http://jin.isynbio.siat.ac.cn/wordpress/) at Shenzhen Institutes of Advanced Technology
- [Jordi van Gestel](https://scholar.google.ch/citations?user=73pVatUAAAAJ&hl=en) and [Noam Golan](https://www.eldarmicrolab.com/team) in [Avigdor Eldar's group](https://www.eldarmicrolab.com/) at Tel-Aviv University
Please reach out if you have created your own sets and think they would be
helpful to the community!
Raw data
{
"_id": null,
"home_page": null,
"name": "delta-microscopy",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.11",
"maintainer_email": null,
"keywords": "bacteria, fluorescence, microscopy",
"author": null,
"author_email": "Jean-Baptiste Lugagne <jblugagne@bu.edu>, Owen OConnor <ooconnor@bu.edu>, Virgile Andreani <andreani@bu.edu>",
"download_url": "https://files.pythonhosted.org/packages/5d/c2/73a43b9479fb319e30a10b45ff1dc15a955dd06388dbfa5a1bc13a6cb10b/delta_microscopy-3.0.0a6.tar.gz",
"platform": null,
"description": "# DeLTA\n\nDeLTA (Deep Learning for Time-lapse Analysis) is a deep learning-based image processing pipeline for segmenting and tracking single cells in time-lapse microscopy movies.\n\n\n\n:scroll: To get started check out the documentation at [delta.readthedocs.io](https://delta.readthedocs.io)\n\n:bug: If you encounter bugs or have questions about the software, please use [Gitlab's issue system](https://gitlab.com/delta-microscopy/delta/-/issues)\n\nYou can also quickly test DeLTA on our data or your own with Google Colab\nfor free [here](https://colab.research.google.com/drive/1WsOydKSMX2ANl441JGkpQfFLrUjmwNAS?usp=sharing)\n\n---\n\nSee also our papers for more details:\n\nVersion 2: [O\u2019Connor OM, Alnahhas RN, Lugagne J-B, Dunlop MJ (2022) DeLTA 2.0: A deep learning pipeline for quantifying single-cell spatial and temporal dynamics. _PLoS Comput Biol_ 18(1): e1009797](https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009797)\n\nVersion 1:\n[Lugagne J-B, Lin H, & Dunlop MJ (2020) DeLTA: Automated cell segmentation, tracking, and lineage reconstruction using deep learning. _PLoS Comput Biol_ 16(4): e1007673](https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007673)\n\n---\n\n## Contributions\n\nA big thank you to the following people who shared their data and training\nsets with us, they help us make DeLTA more generalizable:\n\n- [Simon van Vliet](https://vanvlietlab.ch/) at University of Basel\n- [Zoran Marinkovi\u0107](https://scholar.google.com/citations?user=FKKQ64oAAAAJ&hl=en) and [Marianne Grognot](https://scholar.google.com/citations?user=vT4Tr-kAAAAJ&hl=en) in [Philippe Nghe's group](https://scholar.google.com/citations?user=MF7e9eAAAAAJ&hl=en) at ESPCI Paris\n- [Noah Olsman](http://nolsman.com/) and [Daniel Eaton](https://paulsson.med.harvard.edu/people/daniel-eaton) in [Johan Paulsson's group](https://paulsson.med.harvard.edu/) at Harvard\n- [Shuai Yang](http://jin.isynbio.siat.ac.cn/wordpress/?p=476) in [Fan Jin's group](http://jin.isynbio.siat.ac.cn/wordpress/) at Shenzhen Institutes of Advanced Technology\n- [Jordi van Gestel](https://scholar.google.ch/citations?user=73pVatUAAAAJ&hl=en) and [Noam Golan](https://www.eldarmicrolab.com/team) in [Avigdor Eldar's group](https://www.eldarmicrolab.com/) at Tel-Aviv University\n\nPlease reach out if you have created your own sets and think they would be\nhelpful to the community!\n",
"bugtrack_url": null,
"license": "MIT License",
"summary": "Segments and tracks bacteria",
"version": "3.0.0a6",
"project_urls": {
"documentation": "https://delta.readthedocs.io",
"repository": "https://gitlab.com/delta-microscopy/delta"
},
"split_keywords": [
"bacteria",
" fluorescence",
" microscopy"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "17d135f2c6dd9f17e07ad05db8e1dc106685e2bbac40d007fe1ce9532b2d803c",
"md5": "f131e450a97a4d630c79b99dc2cd00d6",
"sha256": "ac8404d571a0254157a16eaba8f9957c0b0465392e2864e82d864c61af438e42"
},
"downloads": -1,
"filename": "delta_microscopy-3.0.0a6-py3-none-any.whl",
"has_sig": false,
"md5_digest": "f131e450a97a4d630c79b99dc2cd00d6",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.11",
"size": 78846,
"upload_time": "2025-10-22T11:52:06",
"upload_time_iso_8601": "2025-10-22T11:52:06.529890Z",
"url": "https://files.pythonhosted.org/packages/17/d1/35f2c6dd9f17e07ad05db8e1dc106685e2bbac40d007fe1ce9532b2d803c/delta_microscopy-3.0.0a6-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "5dc273a43b9479fb319e30a10b45ff1dc15a955dd06388dbfa5a1bc13a6cb10b",
"md5": "380afb0fb4be1601227716a7cff75a03",
"sha256": "ff042dc0a854446fab7962f6264484fdca72e3ee8eaa44712015bc83de12c543"
},
"downloads": -1,
"filename": "delta_microscopy-3.0.0a6.tar.gz",
"has_sig": false,
"md5_digest": "380afb0fb4be1601227716a7cff75a03",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.11",
"size": 76512620,
"upload_time": "2025-10-22T11:52:00",
"upload_time_iso_8601": "2025-10-22T11:52:00.854397Z",
"url": "https://files.pythonhosted.org/packages/5d/c2/73a43b9479fb319e30a10b45ff1dc15a955dd06388dbfa5a1bc13a6cb10b/delta_microscopy-3.0.0a6.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-22 11:52:00",
"github": false,
"gitlab": true,
"bitbucket": false,
"codeberg": false,
"gitlab_user": "delta-microscopy",
"gitlab_project": "delta",
"lcname": "delta-microscopy"
}