deluca


Namedeluca JSON
Version 0.0.18 PyPI version JSON
download
home_pagehttps://github.com/google/deluca
Summary
upload_time2023-12-05 17:14:23
maintainer
docs_urlNone
authorGoogle AI Princeton
requires_python
licenseApache License
keywords differentiable control algorithms reinforcement learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # `deluca`

Performant, differentiable reinforcement learning

## Notes
1. This is pre-alpha software and is undergoing a number of core changes. Updates to follow.
2. `deluca` is currently implemented as a minimal Python namespace package. It
   will contain environments and agents that *only* depend on NumPy, along with
   utilities for benchmarking, visualization, etc.
3. The remainder of environments are developed in separate plugins (also Python
   namespace packages)
   - [`deluca-jax`](https://github.com/MinRegret/deluca-jax): differentiable environments and relevant agents implemented
     using `jax`
   - [`deluca-lung`](https://pypi.org/project/deluca-lung/): differentiable lung simulators and relevant agents
     implemented in `PyTorch`
4. Documentation forthcoming!

[![pypi](https://badgen.net/pypi/v/deluca)](https://pypi.org/project/deluca/)
[![pyversions](https://raw.githubusercontent.com/MinRegret/deluca/dev/.github/badges/python_versions.svg)](https://pypi.org/project/deluca)
[![security: bandit](https://raw.githubusercontent.com/MinRegret/deluca/dev/.github/badges/bandit.svg)](https://github.com/PyCQA/bandit)
[![Code style: black](https://raw.githubusercontent.com/MinRegret/deluca/dev/.github/badges/black.svg)](https://github.com/psf/black)
[![License: Apache 2.0](https://raw.githubusercontent.com/MinRegret/deluca/dev/.github/badges/apache.svg)](https://github.com/MinRegret/deluca/blob/dev/LICENSE)

[![build](https://github.com/MinRegret/deluca/workflows/build/badge.svg)](https://github.com/MinRegret/deluca/actions)
[![coverage](https://badgen.net/codecov/c/github/MinRegret/deluca)](https://codecov.io/github/MinRegret/deluca)
[![Documentation Status](https://readthedocs.org/projects/deluca/badge/?version=latest)](https://deluca.readthedocs.io/en/latest/?badge=latest)
[![doc_coverage](https://raw.githubusercontent.com/MinRegret/deluca/dev/.github/badges/docstring_coverage.svg)](https://github.com/MinRegret/deluca)

![deluca](https://raw.githubusercontent.com/MinRegret/deluca/dev/assets/img/deluca.svg?token=AAURLVRRLKHPK4VELPKH6X27RW5LC)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/google/deluca",
    "name": "deluca",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "differentiable,control algorithms,reinforcement learning",
    "author": "Google AI Princeton",
    "author_email": "dsuo@google.com",
    "download_url": "https://files.pythonhosted.org/packages/d2/c7/94139464d61662208acc339a5f59d5c60e9cf376a7b53ad0e482328609ff/deluca-0.0.18.tar.gz",
    "platform": null,
    "description": "# `deluca`\n\nPerformant, differentiable reinforcement learning\n\n## Notes\n1. This is pre-alpha software and is undergoing a number of core changes. Updates to follow.\n2. `deluca` is currently implemented as a minimal Python namespace package. It\n   will contain environments and agents that *only* depend on NumPy, along with\n   utilities for benchmarking, visualization, etc.\n3. The remainder of environments are developed in separate plugins (also Python\n   namespace packages)\n   - [`deluca-jax`](https://github.com/MinRegret/deluca-jax): differentiable environments and relevant agents implemented\n     using `jax`\n   - [`deluca-lung`](https://pypi.org/project/deluca-lung/): differentiable lung simulators and relevant agents\n     implemented in `PyTorch`\n4. Documentation forthcoming!\n\n[![pypi](https://badgen.net/pypi/v/deluca)](https://pypi.org/project/deluca/)\n[![pyversions](https://raw.githubusercontent.com/MinRegret/deluca/dev/.github/badges/python_versions.svg)](https://pypi.org/project/deluca)\n[![security: bandit](https://raw.githubusercontent.com/MinRegret/deluca/dev/.github/badges/bandit.svg)](https://github.com/PyCQA/bandit)\n[![Code style: black](https://raw.githubusercontent.com/MinRegret/deluca/dev/.github/badges/black.svg)](https://github.com/psf/black)\n[![License: Apache 2.0](https://raw.githubusercontent.com/MinRegret/deluca/dev/.github/badges/apache.svg)](https://github.com/MinRegret/deluca/blob/dev/LICENSE)\n\n[![build](https://github.com/MinRegret/deluca/workflows/build/badge.svg)](https://github.com/MinRegret/deluca/actions)\n[![coverage](https://badgen.net/codecov/c/github/MinRegret/deluca)](https://codecov.io/github/MinRegret/deluca)\n[![Documentation Status](https://readthedocs.org/projects/deluca/badge/?version=latest)](https://deluca.readthedocs.io/en/latest/?badge=latest)\n[![doc_coverage](https://raw.githubusercontent.com/MinRegret/deluca/dev/.github/badges/docstring_coverage.svg)](https://github.com/MinRegret/deluca)\n\n![deluca](https://raw.githubusercontent.com/MinRegret/deluca/dev/assets/img/deluca.svg?token=AAURLVRRLKHPK4VELPKH6X27RW5LC)\n",
    "bugtrack_url": null,
    "license": "Apache License",
    "summary": "",
    "version": "0.0.18",
    "project_urls": {
        "Homepage": "https://github.com/google/deluca"
    },
    "split_keywords": [
        "differentiable",
        "control algorithms",
        "reinforcement learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d2c794139464d61662208acc339a5f59d5c60e9cf376a7b53ad0e482328609ff",
                "md5": "a153634e1dee0db48d4121f4d177a1af",
                "sha256": "5936eb490b7c3de9f2b81d4fafa6f9d256e428f33ab5a3790f837ccc21e1297d"
            },
            "downloads": -1,
            "filename": "deluca-0.0.18.tar.gz",
            "has_sig": false,
            "md5_digest": "a153634e1dee0db48d4121f4d177a1af",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 10322,
            "upload_time": "2023-12-05T17:14:23",
            "upload_time_iso_8601": "2023-12-05T17:14:23.362757Z",
            "url": "https://files.pythonhosted.org/packages/d2/c7/94139464d61662208acc339a5f59d5c60e9cf376a7b53ad0e482328609ff/deluca-0.0.18.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-05 17:14:23",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "google",
    "github_project": "deluca",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "deluca"
}
        
Elapsed time: 1.90765s