demingfit


Namedemingfit JSON
Version 0.1.0 PyPI version JSON
download
home_pagehttps://github.com/dalawey/deming_regression.git
SummaryA package for performing Deming regression
upload_time2024-08-22 13:51:30
maintainerNone
docs_urlNone
authorDalawey Chen
requires_python>=3.7
licenseNone
keywords deming regression statistics data-analysis
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Deming Regression

This package provides a simple implementation of Deming regression, an errors-in-variables model which tries to find the line of best fit for a two-dimensional dataset when there are errors in both the x and y variables.

## Installation

You can install the package using pip:

```
pip install deming_regression
```

## Usage

Here's a simple example of how to use the `deming_regression` function:

```python
from deming_regression import deming_regression
import numpy as np

x = np.array([1, 2, 3, 4, 5])
y = 2 * x + 1 + np.random.normal(0, 0.1, 5)

intercept, slope = deming_regression(x, y, 0.1, 0.1)
print(f"Intercept: {intercept}, Slope: {slope}")
```

## Running Tests

To run the unit tests, navigate to the package directory and run:

```
python -m unittest discover tests
```

## License

This project is licensed under the MIT License.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/dalawey/deming_regression.git",
    "name": "demingfit",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "deming regression statistics data-analysis",
    "author": "Dalawey Chen",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/68/8d/8845d9bc82d7ba95d79dc953d8fcd14bfc610374623ce053cf1affb22592/demingfit-0.1.0.tar.gz",
    "platform": null,
    "description": "# Deming Regression\r\n\r\nThis package provides a simple implementation of Deming regression, an errors-in-variables model which tries to find the line of best fit for a two-dimensional dataset when there are errors in both the x and y variables.\r\n\r\n## Installation\r\n\r\nYou can install the package using pip:\r\n\r\n```\r\npip install deming_regression\r\n```\r\n\r\n## Usage\r\n\r\nHere's a simple example of how to use the `deming_regression` function:\r\n\r\n```python\r\nfrom deming_regression import deming_regression\r\nimport numpy as np\r\n\r\nx = np.array([1, 2, 3, 4, 5])\r\ny = 2 * x + 1 + np.random.normal(0, 0.1, 5)\r\n\r\nintercept, slope = deming_regression(x, y, 0.1, 0.1)\r\nprint(f\"Intercept: {intercept}, Slope: {slope}\")\r\n```\r\n\r\n## Running Tests\r\n\r\nTo run the unit tests, navigate to the package directory and run:\r\n\r\n```\r\npython -m unittest discover tests\r\n```\r\n\r\n## License\r\n\r\nThis project is licensed under the MIT License.\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A package for performing Deming regression",
    "version": "0.1.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/dalawey/deming_regression/issues",
        "Documentation": "https://github.com/dalawey/deming_regression/wiki",
        "Homepage": "https://github.com/dalawey/deming_regression.git",
        "Source Code": "https://github.com/dalawey/deming_regression"
    },
    "split_keywords": [
        "deming",
        "regression",
        "statistics",
        "data-analysis"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "064c7a2eab12f1a0bb41ad47cafb8385d7b2050d51167f1bfa2de4bdaf99a78e",
                "md5": "681bfabac8ae25aaf5ee459d0f4ecd11",
                "sha256": "eeb0d1ec5997a40da9cc7d7cd3557105f4594819ccfbbb4392b39fb7f8a1d7d3"
            },
            "downloads": -1,
            "filename": "demingfit-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "681bfabac8ae25aaf5ee459d0f4ecd11",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 2643,
            "upload_time": "2024-08-22T13:51:28",
            "upload_time_iso_8601": "2024-08-22T13:51:28.648629Z",
            "url": "https://files.pythonhosted.org/packages/06/4c/7a2eab12f1a0bb41ad47cafb8385d7b2050d51167f1bfa2de4bdaf99a78e/demingfit-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "688d8845d9bc82d7ba95d79dc953d8fcd14bfc610374623ce053cf1affb22592",
                "md5": "c5b745e1117fcc7a762f9fd45299a6eb",
                "sha256": "492b8730c986825d39bc8752b5a8d3dfc7a7cda4563e4ddecbdcf7a2e138244b"
            },
            "downloads": -1,
            "filename": "demingfit-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "c5b745e1117fcc7a762f9fd45299a6eb",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 3120,
            "upload_time": "2024-08-22T13:51:30",
            "upload_time_iso_8601": "2024-08-22T13:51:30.321933Z",
            "url": "https://files.pythonhosted.org/packages/68/8d/8845d9bc82d7ba95d79dc953d8fcd14bfc610374623ce053cf1affb22592/demingfit-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-22 13:51:30",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "dalawey",
    "github_project": "deming_regression",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "demingfit"
}
        
Elapsed time: 0.69122s