denario


Namedenario JSON
Version 0.1.24 PyPI version JSON
download
home_pageNone
SummaryModular Automation of Scientific Research with Multi-Agent Systems
upload_time2025-10-21 00:06:49
maintainerNone
docs_urlNone
authorPablo Villanueva-Domingo, Francisco Villaescusa-Navarro, Boris Bolliet
requires_python>=3.12
licenseGPLv3
keywords agent biology chemistry cosmology llm machine learning material sciences
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Denario

[![Version](https://img.shields.io/pypi/v/denario.svg)](https://pypi.python.org/pypi/denario) [![Python Version](https://img.shields.io/badge/python-%3E%3D3.12-blue.svg)](https://www.python.org/downloads/) [![PyPI - Downloads](https://img.shields.io/pypi/dm/denario)](https://pypi.python.org/pypi/denario) [![License: GPL v3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) [![Ask DeepWiki](https://deepwiki.com/badge.svg)](https://deepwiki.com/AstroPilot-AI/Denario)
<a href="https://www.youtube.com/@denario-ai" target="_blank">
<img src="https://img.shields.io/badge/YouTube-Subscribe-red?style=flat-square&logo=youtube" alt="Subscribe on YouTube" width="140"/>
</a>

Denario is a multiagent system designed to be a scientific research assistant. Denario implements AI agents with [AG2](https://ag2.ai/) and [LangGraph](https://www.langchain.com/langgraph), using [cmbagent](https://github.com/CMBAgents/cmbagent) as the research analysis backend.

## Resources

- [🌐 Project page](https://astropilot-ai.github.io/DenarioPaperPage/)

<!-- - [📄 Paper](arxivblabla) -->

- [📖 Documentation](https://denario.readthedocs.io/en/latest/)

- [🖥️ Denario GUI repository](https://github.com/AstroPilot-AI/DenarioApp)

- [🤗 Demo web app for Denario GUI](https://huggingface.co/spaces/astropilot-ai/Denario)

- [📝 End-to-end research papers generated with Denario](https://github.com/AstroPilot-AI/DenarioExamplePapers)

- [🎥 YouTube channel](https://www.youtube.com/@denario-ai)

## Last updates

- October 9, 2025 - A paper fully generated with Denario has been accepted for publication in the [Open Conference of AI Agents for Science 2025](https://openreview.net/forum?id=LENY7OWxmN), the 1st open conference with AI as primary authors.

## Installation

To install denario create a virtual environment and pip install it. We recommend using Python 3.12:

```bash
python -m venv Denario_env
source Denario_env/bin/activate
pip install "denario[app]"
```

Or alternatively install it with [uv](https://docs.astral.sh/uv/), initializing a project and installing it:

```bash
uv init
uv add denario[app]
```

Then, run the gui with:

```
denario run
```

## Get started

Initialize a `Denario` instance and describe the data and tools to be employed.

```python
from denario import Denario

den = Denario(project_dir="project_dir")

prompt = """
Analyze the experimental data stored in data.csv using sklearn and pandas.
This data includes time-series measurements from a particle detector.
"""

den.set_data_description(prompt)
```

Generate a research idea from that data specification.

```python
den.get_idea()
```

Generate the methodology required for working on that idea.

```python
den.get_method()
```

With the methodology setup, perform the required computations and get the plots and results.

```python
den.get_results()
```

Finally, generate a latex article with the results. You can specify the journal style, in this example we choose the [APS (Physical Review Journals)](https://journals.aps.org/) style.

```python
from denario import Journal

den.get_paper(journal=Journal.APS)
```

You can also manually provide any info as a string or markdown file in an intermediate step, using the `set_idea`, `set_method` or `set_results` methods. For instance, for providing a file with the methodology developed by the user:

```python
den.set_method(path_to_the_method_file.md)
```

## DenarioApp

You can run Denario using a GUI through the [DenarioApp](https://github.com/AstroPilot-AI/DenarioApp).

The app is already installed with `pip install "denario[app]"`, otherwise install it with `pip install denario_app` or `uv sync --extra app`.

Then, launch the GUI with

```bash
denario run
```

Test a [deployed demo of the app in HugginFace Spaces](https://huggingface.co/spaces/astropilot-ai/Denario).

## Build from source

### pip

You will need python 3.12 or higher installed. Clone Denario:

```bash
git clone https://github.com/AstroPilot-AI/Denario.git
cd Denario
```

Create and activate a virtual environment

```bash
python3 -m venv Denario_env
source Denario_env/bin/activate
```

And install the project

```bash
pip install -e .
```

### uv

You can also install the project using [uv](https://docs.astral.sh/uv/), just running:

```bash
uv sync
```

which will create the virtual environment and install the dependencies and project. Activate the virtual environment if needed with

```bash
source .venv/bin/activate
```

## Docker

You can run Denario in a docker image. Pull the image with:

```bash
docker pull pablovd/denario:latest
```

Once built, you can run the GUI with

```bash
docker run -p 8501:8501 --rm pablovd/denario:latest
```

or in interactive mode with

```bash
docker run --rm -it pablovd/denario:latest bash
```

Share volumes with `-v $(pwd)/project:/app/project` for inputing data and accessing to it. You can also share the API keys with a `.env` file in the same folder with `-v $(pwd).env/app/.env`.

## Contributing

Pull requests are welcome! Feel free to open an issue for bugs, comments, questions and suggestions.

<!-- ## Citation

If you use this library please link this repository and cite [arXiv:2506.xxxxx](arXiv:x2506.xxxxx). -->

## License

[GNU GENERAL PUBLIC LICENSE (GPLv3)](https://www.gnu.org/licenses/gpl-3.0.html)

Denario - Copyright (C) 2025 Pablo Villanueva-Domingo, Francisco Villaescusa-Navarro, Boris Bolliet

## Contact and Enquieries

E-mail: [denario.astropilot.ai@gmail.com](mailto:denario.astropilot.ai@gmail.com)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "denario",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.12",
    "maintainer_email": "Denario <denario.astropilot.ai@gmail.com>",
    "keywords": "agent, biology, chemistry, cosmology, llm, machine learning, material sciences",
    "author": "Pablo Villanueva-Domingo, Francisco Villaescusa-Navarro, Boris Bolliet",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/e3/5c/3c828d293a8bf40fdcbabb54e3d7e48bc18889284ce5ec0e0e77c71ec0ae/denario-0.1.24.tar.gz",
    "platform": null,
    "description": "# Denario\n\n[![Version](https://img.shields.io/pypi/v/denario.svg)](https://pypi.python.org/pypi/denario) [![Python Version](https://img.shields.io/badge/python-%3E%3D3.12-blue.svg)](https://www.python.org/downloads/) [![PyPI - Downloads](https://img.shields.io/pypi/dm/denario)](https://pypi.python.org/pypi/denario) [![License: GPL v3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) [![Ask DeepWiki](https://deepwiki.com/badge.svg)](https://deepwiki.com/AstroPilot-AI/Denario)\n<a href=\"https://www.youtube.com/@denario-ai\" target=\"_blank\">\n<img src=\"https://img.shields.io/badge/YouTube-Subscribe-red?style=flat-square&logo=youtube\" alt=\"Subscribe on YouTube\" width=\"140\"/>\n</a>\n\nDenario is a multiagent system designed to be a scientific research assistant. Denario implements AI agents with [AG2](https://ag2.ai/) and [LangGraph](https://www.langchain.com/langgraph), using [cmbagent](https://github.com/CMBAgents/cmbagent) as the research analysis backend.\n\n## Resources\n\n- [\ud83c\udf10 Project page](https://astropilot-ai.github.io/DenarioPaperPage/)\n\n<!-- - [\ud83d\udcc4 Paper](arxivblabla) -->\n\n- [\ud83d\udcd6 Documentation](https://denario.readthedocs.io/en/latest/)\n\n- [\ud83d\udda5\ufe0f Denario GUI repository](https://github.com/AstroPilot-AI/DenarioApp)\n\n- [\ud83e\udd17 Demo web app for Denario GUI](https://huggingface.co/spaces/astropilot-ai/Denario)\n\n- [\ud83d\udcdd End-to-end research papers generated with Denario](https://github.com/AstroPilot-AI/DenarioExamplePapers)\n\n- [\ud83c\udfa5 YouTube channel](https://www.youtube.com/@denario-ai)\n\n## Last updates\n\n- October 9, 2025 - A paper fully generated with Denario has been accepted for publication in the [Open Conference of AI Agents for Science 2025](https://openreview.net/forum?id=LENY7OWxmN), the 1st open conference with AI as primary authors.\n\n## Installation\n\nTo install denario create a virtual environment and pip install it. We recommend using Python 3.12:\n\n```bash\npython -m venv Denario_env\nsource Denario_env/bin/activate\npip install \"denario[app]\"\n```\n\nOr alternatively install it with [uv](https://docs.astral.sh/uv/), initializing a project and installing it:\n\n```bash\nuv init\nuv add denario[app]\n```\n\nThen, run the gui with:\n\n```\ndenario run\n```\n\n## Get started\n\nInitialize a `Denario` instance and describe the data and tools to be employed.\n\n```python\nfrom denario import Denario\n\nden = Denario(project_dir=\"project_dir\")\n\nprompt = \"\"\"\nAnalyze the experimental data stored in data.csv using sklearn and pandas.\nThis data includes time-series measurements from a particle detector.\n\"\"\"\n\nden.set_data_description(prompt)\n```\n\nGenerate a research idea from that data specification.\n\n```python\nden.get_idea()\n```\n\nGenerate the methodology required for working on that idea.\n\n```python\nden.get_method()\n```\n\nWith the methodology setup, perform the required computations and get the plots and results.\n\n```python\nden.get_results()\n```\n\nFinally, generate a latex article with the results. You can specify the journal style, in this example we choose the [APS (Physical Review Journals)](https://journals.aps.org/) style.\n\n```python\nfrom denario import Journal\n\nden.get_paper(journal=Journal.APS)\n```\n\nYou can also manually provide any info as a string or markdown file in an intermediate step, using the `set_idea`, `set_method` or `set_results` methods. For instance, for providing a file with the methodology developed by the user:\n\n```python\nden.set_method(path_to_the_method_file.md)\n```\n\n## DenarioApp\n\nYou can run Denario using a GUI through the [DenarioApp](https://github.com/AstroPilot-AI/DenarioApp).\n\nThe app is already installed with `pip install \"denario[app]\"`, otherwise install it with `pip install denario_app` or `uv sync --extra app`.\n\nThen, launch the GUI with\n\n```bash\ndenario run\n```\n\nTest a [deployed demo of the app in HugginFace Spaces](https://huggingface.co/spaces/astropilot-ai/Denario).\n\n## Build from source\n\n### pip\n\nYou will need python 3.12 or higher installed. Clone Denario:\n\n```bash\ngit clone https://github.com/AstroPilot-AI/Denario.git\ncd Denario\n```\n\nCreate and activate a virtual environment\n\n```bash\npython3 -m venv Denario_env\nsource Denario_env/bin/activate\n```\n\nAnd install the project\n\n```bash\npip install -e .\n```\n\n### uv\n\nYou can also install the project using [uv](https://docs.astral.sh/uv/), just running:\n\n```bash\nuv sync\n```\n\nwhich will create the virtual environment and install the dependencies and project. Activate the virtual environment if needed with\n\n```bash\nsource .venv/bin/activate\n```\n\n## Docker\n\nYou can run Denario in a docker image. Pull the image with:\n\n```bash\ndocker pull pablovd/denario:latest\n```\n\nOnce built, you can run the GUI with\n\n```bash\ndocker run -p 8501:8501 --rm pablovd/denario:latest\n```\n\nor in interactive mode with\n\n```bash\ndocker run --rm -it pablovd/denario:latest bash\n```\n\nShare volumes with `-v $(pwd)/project:/app/project` for inputing data and accessing to it. You can also share the API keys with a `.env` file in the same folder with `-v $(pwd).env/app/.env`.\n\n## Contributing\n\nPull requests are welcome! Feel free to open an issue for bugs, comments, questions and suggestions.\n\n<!-- ## Citation\n\nIf you use this library please link this repository and cite [arXiv:2506.xxxxx](arXiv:x2506.xxxxx). -->\n\n## License\n\n[GNU GENERAL PUBLIC LICENSE (GPLv3)](https://www.gnu.org/licenses/gpl-3.0.html)\n\nDenario - Copyright (C) 2025 Pablo Villanueva-Domingo, Francisco Villaescusa-Navarro, Boris Bolliet\n\n## Contact and Enquieries\n\nE-mail: [denario.astropilot.ai@gmail.com](mailto:denario.astropilot.ai@gmail.com)\n",
    "bugtrack_url": null,
    "license": "GPLv3",
    "summary": "Modular Automation of Scientific Research with Multi-Agent Systems",
    "version": "0.1.24",
    "project_urls": {
        "Documentation": "https://denario.readthedocs.io/en/latest/",
        "Homepage": "https://astropilot-ai.github.io/DenarioPaperPage/",
        "Repository": "https://github.com/AstroPilot-AI/Denario"
    },
    "split_keywords": [
        "agent",
        " biology",
        " chemistry",
        " cosmology",
        " llm",
        " machine learning",
        " material sciences"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "2f4d2da520817b5dae762cff67497166e5b800fedefa7a4400a53dccee30cd19",
                "md5": "e37fa6b0c4ccd496abd024fe76efa02b",
                "sha256": "59ac4f2010b7ec555441ec2e82457854ccaa4ae8497288ca38186bb7d746c5e8"
            },
            "downloads": -1,
            "filename": "denario-0.1.24-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e37fa6b0c4ccd496abd024fe76efa02b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.12",
            "size": 227439,
            "upload_time": "2025-10-21T00:06:45",
            "upload_time_iso_8601": "2025-10-21T00:06:45.521714Z",
            "url": "https://files.pythonhosted.org/packages/2f/4d/2da520817b5dae762cff67497166e5b800fedefa7a4400a53dccee30cd19/denario-0.1.24-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "e35c3c828d293a8bf40fdcbabb54e3d7e48bc18889284ce5ec0e0e77c71ec0ae",
                "md5": "2b3129cccee363d5c655361d003905f0",
                "sha256": "46ea500e06e847eb4cd5b13e6ec4db8d278e0bf6e83a3caa9ce8871d2a85056b"
            },
            "downloads": -1,
            "filename": "denario-0.1.24.tar.gz",
            "has_sig": false,
            "md5_digest": "2b3129cccee363d5c655361d003905f0",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.12",
            "size": 569946,
            "upload_time": "2025-10-21T00:06:49",
            "upload_time_iso_8601": "2025-10-21T00:06:49.903560Z",
            "url": "https://files.pythonhosted.org/packages/e3/5c/3c828d293a8bf40fdcbabb54e3d7e48bc18889284ce5ec0e0e77c71ec0ae/denario-0.1.24.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-21 00:06:49",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "AstroPilot-AI",
    "github_project": "Denario",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "denario"
}
        
Elapsed time: 1.65277s