denario


Namedenario JSON
Version 0.1.2 PyPI version JSON
download
home_pageNone
SummaryModular Automation of Scientific Research with Multi-Agent Systems
upload_time2025-07-18 14:49:05
maintainerNone
docs_urlNone
authorNone
requires_python>=3.12
licenseGPLv3
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Denario

[![Version](https://img.shields.io/pypi/v/denario.svg)](https://pypi.python.org/pypi/denario) [![Python Version](https://img.shields.io/badge/python-%3E%3D3.12-blue.svg)](https://www.python.org/downloads/) [![PyPI - Downloads](https://img.shields.io/pypi/dm/denario)](https://pypi.python.org/pypi/denario) [![License: GPL v3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0)

Denario is a multiagent system designed to automatize scientific research. Denario implements AI agents with [AG2](https://ag2.ai/) and [LangGraph](https://www.langchain.com/langgraph). The research analysis backend is [cmbagent](https://github.com/CMBAgents/cmbagent). Project under construction.

## Resources

- [Project page](https://astropilot-ai.github.io/DenarioPaperPage/)

- [Documentation](https://denario.readthedocs.io/en/latest/)

- [End-to-end research papers generated with Denario](https://github.com/AstroPilot-AI/DenarioExamplePapers)

## Installation

To install denario, just run

```bash
pip install denario
```

## Get started

Initialize a `Denario` instance and describe the data and tools to be employed.

```python
from denario import Denario, Journal

den = Denario(project_dir="project_dir")

prompt = "Analyze the experimental data stored in /path/to/data.csv using sklearn and pandas. This data includes time-series measurements from a particle detector."

den.set_data_description(prompt)
```

Generate a research idea from that data specification.

```python
den.get_idea()
```

Generate the methodology required for working on that idea.

```python
den.get_method()
```

With the methodology setup, perform the required computations and get the plots and results.

```python
den.get_results()
```

Finally, generate a latex article with the results. You can specify the journal style, in this example we choose the [APS (Physical Review Journals)](https://journals.aps.org/) style.

```python
from denario import Journal

den.get_paper(journal=Journal.APS)
```

You can also manually provide any info as a string or markdown file in an intermediate step, using the `set_idea`, `set_method` or `set_results` methods. For instance, for providing a file with the methodology developed by the user:

```python
den.set_method(path_to_the_method_file.md)
```

## App

You can run Denario using a GUI through the [DenarioApp](https://github.com/AstroPilot-AI/DenarioApp).

Test the deployed app in [HugginFace Spaces](nope).

## Build from source

### pip

You will need python 3.12 installed.

Create a virtual environment

```bash
python3 -m venv .venv
```

Activate the virtual environment

```bash
source .venv/bin/activate
```

And install the project

```bash
pip install -e .
```

### uv

You can also install the project using [uv](https://docs.astral.sh/uv/), just running:

```bash
uv sync
```

which will create the virtual environment and install the dependencies and project. Activate the virtual environment if needed with

```bash
source .venv/bin/activate
```

## Contributing

Pull requests are welcome! Feel free to open an issue for bugs, comments, questions and suggestions.

<!-- ## Citation

If you use this library please link this repository and cite [arXiv:2506.xxxxx](arXiv:x2506.xxxxx). -->

## License

[GNU GENERAL PUBLIC LICENSE (GPLv3)](https://www.gnu.org/licenses/gpl-3.0.html)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "denario",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.12",
    "maintainer_email": null,
    "keywords": null,
    "author": null,
    "author_email": "Boris Bolliet <boris.bolliet@gmail.com>, Francisco Villaescusa-Navarro <villaescusa.francisco@gmail.com>, Pablo Villanueva-Domingo <pablo.villanueva.domingo@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/40/5d/a7488d4664a954be602aa58de582b6e439a772ed364627d604c6447b95e6/denario-0.1.2.tar.gz",
    "platform": null,
    "description": "# Denario\n\n[![Version](https://img.shields.io/pypi/v/denario.svg)](https://pypi.python.org/pypi/denario) [![Python Version](https://img.shields.io/badge/python-%3E%3D3.12-blue.svg)](https://www.python.org/downloads/) [![PyPI - Downloads](https://img.shields.io/pypi/dm/denario)](https://pypi.python.org/pypi/denario) [![License: GPL v3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0)\n\nDenario is a multiagent system designed to automatize scientific research. Denario implements AI agents with [AG2](https://ag2.ai/) and [LangGraph](https://www.langchain.com/langgraph). The research analysis backend is [cmbagent](https://github.com/CMBAgents/cmbagent). Project under construction.\n\n## Resources\n\n- [Project page](https://astropilot-ai.github.io/DenarioPaperPage/)\n\n- [Documentation](https://denario.readthedocs.io/en/latest/)\n\n- [End-to-end research papers generated with Denario](https://github.com/AstroPilot-AI/DenarioExamplePapers)\n\n## Installation\n\nTo install denario, just run\n\n```bash\npip install denario\n```\n\n## Get started\n\nInitialize a `Denario` instance and describe the data and tools to be employed.\n\n```python\nfrom denario import Denario, Journal\n\nden = Denario(project_dir=\"project_dir\")\n\nprompt = \"Analyze the experimental data stored in /path/to/data.csv using sklearn and pandas. This data includes time-series measurements from a particle detector.\"\n\nden.set_data_description(prompt)\n```\n\nGenerate a research idea from that data specification.\n\n```python\nden.get_idea()\n```\n\nGenerate the methodology required for working on that idea.\n\n```python\nden.get_method()\n```\n\nWith the methodology setup, perform the required computations and get the plots and results.\n\n```python\nden.get_results()\n```\n\nFinally, generate a latex article with the results. You can specify the journal style, in this example we choose the [APS (Physical Review Journals)](https://journals.aps.org/) style.\n\n```python\nfrom denario import Journal\n\nden.get_paper(journal=Journal.APS)\n```\n\nYou can also manually provide any info as a string or markdown file in an intermediate step, using the `set_idea`, `set_method` or `set_results` methods. For instance, for providing a file with the methodology developed by the user:\n\n```python\nden.set_method(path_to_the_method_file.md)\n```\n\n## App\n\nYou can run Denario using a GUI through the [DenarioApp](https://github.com/AstroPilot-AI/DenarioApp).\n\nTest the deployed app in [HugginFace Spaces](nope).\n\n## Build from source\n\n### pip\n\nYou will need python 3.12 installed.\n\nCreate a virtual environment\n\n```bash\npython3 -m venv .venv\n```\n\nActivate the virtual environment\n\n```bash\nsource .venv/bin/activate\n```\n\nAnd install the project\n\n```bash\npip install -e .\n```\n\n### uv\n\nYou can also install the project using [uv](https://docs.astral.sh/uv/), just running:\n\n```bash\nuv sync\n```\n\nwhich will create the virtual environment and install the dependencies and project. Activate the virtual environment if needed with\n\n```bash\nsource .venv/bin/activate\n```\n\n## Contributing\n\nPull requests are welcome! Feel free to open an issue for bugs, comments, questions and suggestions.\n\n<!-- ## Citation\n\nIf you use this library please link this repository and cite [arXiv:2506.xxxxx](arXiv:x2506.xxxxx). -->\n\n## License\n\n[GNU GENERAL PUBLIC LICENSE (GPLv3)](https://www.gnu.org/licenses/gpl-3.0.html)\n",
    "bugtrack_url": null,
    "license": "GPLv3",
    "summary": "Modular Automation of Scientific Research with Multi-Agent Systems",
    "version": "0.1.2",
    "project_urls": {
        "documentation": "https://denario.readthedocs.io/en/latest/",
        "homepage": "https://astropilot-ai.github.io/DenarioPaperPage/"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "8ddac76f253bbe501a7e5596c24c154d0e0679ea228304b49ba51fe326bbacb2",
                "md5": "28a272be1093513f5c852fa53c230a2e",
                "sha256": "64bffa1adb326ff36ad1fa4b90dbe34de0420c54e4702815262cff17632bf343"
            },
            "downloads": -1,
            "filename": "denario-0.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "28a272be1093513f5c852fa53c230a2e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.12",
            "size": 215238,
            "upload_time": "2025-07-18T14:48:54",
            "upload_time_iso_8601": "2025-07-18T14:48:54.749980Z",
            "url": "https://files.pythonhosted.org/packages/8d/da/c76f253bbe501a7e5596c24c154d0e0679ea228304b49ba51fe326bbacb2/denario-0.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "405da7488d4664a954be602aa58de582b6e439a772ed364627d604c6447b95e6",
                "md5": "8ac3d7909cdd715f93751bfaaf3da2ec",
                "sha256": "876ac91ba6010492628f267223d1b3ba4c7e9001103174e92fb9c242f295ad58"
            },
            "downloads": -1,
            "filename": "denario-0.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "8ac3d7909cdd715f93751bfaaf3da2ec",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.12",
            "size": 32811656,
            "upload_time": "2025-07-18T14:49:05",
            "upload_time_iso_8601": "2025-07-18T14:49:05.209948Z",
            "url": "https://files.pythonhosted.org/packages/40/5d/a7488d4664a954be602aa58de582b6e439a772ed364627d604c6447b95e6/denario-0.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-18 14:49:05",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "denario"
}
        
Elapsed time: 0.76368s