densitypdf


Namedensitypdf JSON
Version 0.1.2 PyPI version JSON
download
home_pagehttps://github.com/microprediction/density
SummaryEvaluation of probability density functions
upload_time2025-01-09 22:44:07
maintainerNone
docs_urlNone
authormicroprediction
requires_pythonNone
licenseMIT
keywords
VCS
bugtrack_url
requirements pydantic
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# Density PDF 
Evaluation of univariate density functions defined in the `density` package.


## Install

    pip install densitypdf 


## Usage 

    from densitypdf import density_pdf

    # Example mixture with one scipy normal and one builtin normal

    mixture_spec = {
        "type": "mixture",
        "components": [
            {
                "density": {
                    "type": "scipy",
                    "name": "norm",
                    "params": {"loc": 0, "scale": 1}
                },
                "weight": 0.6
            },
            {
                "density": {
                    "type": "builtin",
                    "name": "norm",
                    "params": {"loc": 2.0, "scale": 1.0}
                },
                "weight": 0.4
            }
        ]
    }

    val = density_pdf(mixture_spec, x=0.0)

The `builtin` options are replacements for scipy.stats distributions should you wish to use them. 

## Specifying densities or mixtures of the same
One is limited to a finite set of continuous distributions, and mixtures of the same. 

See [examples](https://github.com/microprediction/density/tree/main/examples) of specifying densities. 

See the [Scipy manifest](https://github.com/microprediction/density/blob/main/density/schemachecker/scipydensitymanifest.py) for a list of densities. 


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/microprediction/density",
    "name": "densitypdf",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": "microprediction",
    "author_email": "peter.cotton@microprediction.com",
    "download_url": "https://files.pythonhosted.org/packages/d3/6e/f5263108b29d9f871f2134d7efc6ff7c047b75608efdcd1c35719fd50f49/densitypdf-0.1.2.tar.gz",
    "platform": null,
    "description": "\n# Density PDF \nEvaluation of univariate density functions defined in the `density` package.\n\n\n## Install\n\n    pip install densitypdf \n\n\n## Usage \n\n    from densitypdf import density_pdf\n\n    # Example mixture with one scipy normal and one builtin normal\n\n    mixture_spec = {\n        \"type\": \"mixture\",\n        \"components\": [\n            {\n                \"density\": {\n                    \"type\": \"scipy\",\n                    \"name\": \"norm\",\n                    \"params\": {\"loc\": 0, \"scale\": 1}\n                },\n                \"weight\": 0.6\n            },\n            {\n                \"density\": {\n                    \"type\": \"builtin\",\n                    \"name\": \"norm\",\n                    \"params\": {\"loc\": 2.0, \"scale\": 1.0}\n                },\n                \"weight\": 0.4\n            }\n        ]\n    }\n\n    val = density_pdf(mixture_spec, x=0.0)\n\nThe `builtin` options are replacements for scipy.stats distributions should you wish to use them. \n\n## Specifying densities or mixtures of the same\nOne is limited to a finite set of continuous distributions, and mixtures of the same. \n\nSee [examples](https://github.com/microprediction/density/tree/main/examples) of specifying densities. \n\nSee the [Scipy manifest](https://github.com/microprediction/density/blob/main/density/schemachecker/scipydensitymanifest.py) for a list of densities. \n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Evaluation of probability density functions",
    "version": "0.1.2",
    "project_urls": {
        "Homepage": "https://github.com/microprediction/density"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a2b59d66e3a1d70a53ab8d79f2b38a82c155980bef9a5463f2cd4f7995caf18d",
                "md5": "7ba66a2894ca2162235f08df8a9c0db3",
                "sha256": "7cfbdda444c85afc28a9c48fd4a79fbb924d2b45fcceb713209649fddc2dc083"
            },
            "downloads": -1,
            "filename": "densitypdf-0.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7ba66a2894ca2162235f08df8a9c0db3",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 8502,
            "upload_time": "2025-01-09T22:44:05",
            "upload_time_iso_8601": "2025-01-09T22:44:05.980871Z",
            "url": "https://files.pythonhosted.org/packages/a2/b5/9d66e3a1d70a53ab8d79f2b38a82c155980bef9a5463f2cd4f7995caf18d/densitypdf-0.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d36ef5263108b29d9f871f2134d7efc6ff7c047b75608efdcd1c35719fd50f49",
                "md5": "1d2d25dd8360d8511ac9d7a486300dfe",
                "sha256": "05b080d3d9d6e62de26715c0021086d1dbdf04668827144df0e52be80f39d9a9"
            },
            "downloads": -1,
            "filename": "densitypdf-0.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "1d2d25dd8360d8511ac9d7a486300dfe",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 12097,
            "upload_time": "2025-01-09T22:44:07",
            "upload_time_iso_8601": "2025-01-09T22:44:07.472486Z",
            "url": "https://files.pythonhosted.org/packages/d3/6e/f5263108b29d9f871f2134d7efc6ff7c047b75608efdcd1c35719fd50f49/densitypdf-0.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-09 22:44:07",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "microprediction",
    "github_project": "density",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "pydantic",
            "specs": [
                [
                    ">=",
                    "2.10.5"
                ]
            ]
        }
    ],
    "lcname": "densitypdf"
}
        
Elapsed time: 4.19362s