|repostatus| |ci-status| |coverage| |pyversions| |license|
.. |repostatus| image:: https://www.repostatus.org/badges/latest/active.svg
:target: https://www.repostatus.org/#active
:alt: Project Status: Active — The project has reached a stable, usable
state and is being actively developed.
.. |ci-status| image:: https://github.com/jwodder/derange/actions/workflows/test.yml/badge.svg
:target: https://github.com/jwodder/derange/actions/workflows/test.yml
:alt: CI Status
.. |coverage| image:: https://codecov.io/gh/jwodder/derange/branch/master/graph/badge.svg
:target: https://codecov.io/gh/jwodder/derange
.. |pyversions| image:: https://img.shields.io/pypi/pyversions/derange.svg
:target: https://pypi.org/project/derange
.. |license| image:: https://img.shields.io/github/license/jwodder/derange.svg
:target: https://opensource.org/licenses/MIT
:alt: MIT License
`GitHub <https://github.com/jwodder/derange>`_
| `PyPI <https://pypi.org/project/derange>`_
| `Issues <https://github.com/jwodder/derange/issues>`_
| `Changelog <https://github.com/jwodder/derange/blob/master/CHANGELOG.md>`_
Do you have a list of integers? Do you want to know what ranges of consecutive
values the list covers? Do you need to solve a `gaps and islands
<https://stackoverflow.com/tags/gaps-and-islands/info>`_ problem outside of
SQL? Maybe you have a list of dates and need to find the longest streak of
consecutive days on which something happened. No? Why not? Well, either way,
the ``derange`` module is here for you, ready to solve all these problems and a
couple more.
Installation
============
``derange`` requires Python 3.8 or higher. Just use `pip
<https://pip.pypa.io>`_ for Python 3 (You have pip, right?) to install it::
python3 -m pip install derange
Examples
========
Condense commit years obtained from ``git log`` or the like into ``range``
objects:
>>> import derange
>>> derange.derange([2015, 2015, 2015, 2014, 2014, 2011, 2010, 2010, 2009, 2009])
[range(2009, 2012), range(2014, 2016)]
If the input is already sorted, you can condense it slightly faster with
``derange_sorted()``:
>>> derange.derange_sorted([2009, 2009, 2010, 2010, 2011, 2014, 2014, 2015, 2015, 2015])
[range(2009, 2012), range(2014, 2016)]
Organize non-integer values into closed intervals (represented as pairs of
endpoints) with ``deinterval()``:
>>> import datetime
>>> # deinterval() requires a callable for determining when two values are "adjacent":
>>> def within_24_hours(a,b):
... return abs(a-b) <= datetime.timedelta(hours=24)
...
>>> timestamps = [
... datetime.datetime(2017, 11, 2, 12, 0),
... datetime.datetime(2017, 11, 3, 11, 0),
... datetime.datetime(2017, 11, 4, 10, 0),
... datetime.datetime(2017, 11, 5, 9, 0),
... datetime.datetime(2017, 11, 6, 9, 0),
... datetime.datetime(2017, 11, 7, 10, 0),
... ]
>>> derange.deinterval(within_24_hours, timestamps)
[(datetime.datetime(2017, 11, 2, 12, 0), datetime.datetime(2017, 11, 6, 9, 0)), (datetime.datetime(2017, 11, 7, 10, 0), datetime.datetime(2017, 11, 7, 10, 0))]
… which also has a ``deinterval_sorted()`` variant:
>>> derange.deinterval_sorted(within_24_hours, timestamps)
[(datetime.datetime(2017, 11, 2, 12, 0), datetime.datetime(2017, 11, 6, 9, 0)), (datetime.datetime(2017, 11, 7, 10, 0), datetime.datetime(2017, 11, 7, 10, 0))]
>>> derange.deinterval_sorted(within_24_hours, reversed(timestamps))
Traceback (most recent call last):
...
ValueError: sequence not in ascending order
API
===
.. code:: python
derange.derange(iterable: Iterable[int]) -> List[range]
Convert a sequence of integers to a minimal list of ``range`` objects that
together contain all of the input elements.
Output is in strictly ascending order. Input need not be in order (but see
also ``derange_sorted()``). Duplicate input values are ignored.
.. code:: python
derange.derange_sorted(iterable: Iterable[int]) -> List[range]
Convert a *non-decreasing* sequence of integers to a minimal list of ``range``
objects that together contain all of the input elements. This is faster than
``derange()`` but only accepts sorted input.
.. code:: python
derange.deinterval(
adjacent: Callable[[T,T], bool],
iterable: Iterable[T],
) -> List[Tuple[T,T]]
Convert a sequence of totally-ordered values to a minimal list of closed
intervals (represented as pairs of endpoints) that together contain all of the
input elements. This is a generalization of ``derange()`` for arbitrary types.
Two input values will be placed in the same interval iff they are directly
adjacent or there exists a chain of adjacent input values connecting them,
where adjacency is defined by the given ``adjacent`` callable.
``adjacent`` will be called with two elements of ``iterable`` at a time to test
whether they should be placed in the same interval. The binary relation
implied by ``adjacent`` must be reflexive and symmetric, and for all ``x < y <
z``, if ``adjacent(x, z)`` is true, then both ``adjacent(x, y)`` and
``adjacent(y, z)`` must also be true.
Output is in strictly ascending order. Input need not be in order (but see
also ``deinterval_sorted()``). Duplicate input values are ignored.
Note that, unlike with ``range`` objects, intervals returned from
``deinterval()`` contain their upper bounds.
.. code:: python
derange.deinterval_sorted(
adjacent: Callable[[T,T], bool],
iterable: Iterable[T],
) -> List[Tuple[T,T]]
Convert a *non-decreasing* sequence of totally-ordered values to a minimal list
of closed intervals that together contain all of the input elements. This is
faster than ``deinterval()`` but only accepts sorted input.
Raw data
{
"_id": null,
"home_page": null,
"name": "derange",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "compression, connected component, consecutive, distribution sort, gaps and islands, interval, range, sequential, sorting, sparse array, streak",
"author": null,
"author_email": "John Thorvald Wodder II <derange@varonathe.org>",
"download_url": "https://files.pythonhosted.org/packages/b0/44/494faaed0f858a814ea379d2feb6e97dc37cade82e7350d02cb1298b4512/derange-0.2.2.tar.gz",
"platform": null,
"description": "|repostatus| |ci-status| |coverage| |pyversions| |license|\n\n.. |repostatus| image:: https://www.repostatus.org/badges/latest/active.svg\n :target: https://www.repostatus.org/#active\n :alt: Project Status: Active \u2014 The project has reached a stable, usable\n state and is being actively developed.\n\n.. |ci-status| image:: https://github.com/jwodder/derange/actions/workflows/test.yml/badge.svg\n :target: https://github.com/jwodder/derange/actions/workflows/test.yml\n :alt: CI Status\n\n.. |coverage| image:: https://codecov.io/gh/jwodder/derange/branch/master/graph/badge.svg\n :target: https://codecov.io/gh/jwodder/derange\n\n.. |pyversions| image:: https://img.shields.io/pypi/pyversions/derange.svg\n :target: https://pypi.org/project/derange\n\n.. |license| image:: https://img.shields.io/github/license/jwodder/derange.svg\n :target: https://opensource.org/licenses/MIT\n :alt: MIT License\n\n`GitHub <https://github.com/jwodder/derange>`_\n| `PyPI <https://pypi.org/project/derange>`_\n| `Issues <https://github.com/jwodder/derange/issues>`_\n| `Changelog <https://github.com/jwodder/derange/blob/master/CHANGELOG.md>`_\n\nDo you have a list of integers? Do you want to know what ranges of consecutive\nvalues the list covers? Do you need to solve a `gaps and islands\n<https://stackoverflow.com/tags/gaps-and-islands/info>`_ problem outside of\nSQL? Maybe you have a list of dates and need to find the longest streak of\nconsecutive days on which something happened. No? Why not? Well, either way,\nthe ``derange`` module is here for you, ready to solve all these problems and a\ncouple more.\n\n\nInstallation\n============\n``derange`` requires Python 3.8 or higher. Just use `pip\n<https://pip.pypa.io>`_ for Python 3 (You have pip, right?) to install it::\n\n python3 -m pip install derange\n\n\nExamples\n========\nCondense commit years obtained from ``git log`` or the like into ``range``\nobjects:\n\n>>> import derange\n>>> derange.derange([2015, 2015, 2015, 2014, 2014, 2011, 2010, 2010, 2009, 2009])\n[range(2009, 2012), range(2014, 2016)]\n\nIf the input is already sorted, you can condense it slightly faster with\n``derange_sorted()``:\n\n>>> derange.derange_sorted([2009, 2009, 2010, 2010, 2011, 2014, 2014, 2015, 2015, 2015])\n[range(2009, 2012), range(2014, 2016)]\n\nOrganize non-integer values into closed intervals (represented as pairs of\nendpoints) with ``deinterval()``:\n\n>>> import datetime\n>>> # deinterval() requires a callable for determining when two values are \"adjacent\":\n>>> def within_24_hours(a,b):\n... return abs(a-b) <= datetime.timedelta(hours=24)\n...\n>>> timestamps = [\n... datetime.datetime(2017, 11, 2, 12, 0),\n... datetime.datetime(2017, 11, 3, 11, 0),\n... datetime.datetime(2017, 11, 4, 10, 0),\n... datetime.datetime(2017, 11, 5, 9, 0),\n... datetime.datetime(2017, 11, 6, 9, 0),\n... datetime.datetime(2017, 11, 7, 10, 0),\n... ]\n>>> derange.deinterval(within_24_hours, timestamps)\n[(datetime.datetime(2017, 11, 2, 12, 0), datetime.datetime(2017, 11, 6, 9, 0)), (datetime.datetime(2017, 11, 7, 10, 0), datetime.datetime(2017, 11, 7, 10, 0))]\n\n\u2026 which also has a ``deinterval_sorted()`` variant:\n\n>>> derange.deinterval_sorted(within_24_hours, timestamps)\n[(datetime.datetime(2017, 11, 2, 12, 0), datetime.datetime(2017, 11, 6, 9, 0)), (datetime.datetime(2017, 11, 7, 10, 0), datetime.datetime(2017, 11, 7, 10, 0))]\n>>> derange.deinterval_sorted(within_24_hours, reversed(timestamps))\nTraceback (most recent call last):\n ...\nValueError: sequence not in ascending order\n\n\nAPI\n===\n\n.. code:: python\n\n derange.derange(iterable: Iterable[int]) -> List[range]\n\nConvert a sequence of integers to a minimal list of ``range`` objects that\ntogether contain all of the input elements.\n\nOutput is in strictly ascending order. Input need not be in order (but see\nalso ``derange_sorted()``). Duplicate input values are ignored.\n\n.. code:: python\n\n derange.derange_sorted(iterable: Iterable[int]) -> List[range]\n\nConvert a *non-decreasing* sequence of integers to a minimal list of ``range``\nobjects that together contain all of the input elements. This is faster than\n``derange()`` but only accepts sorted input.\n\n.. code:: python\n\n derange.deinterval(\n adjacent: Callable[[T,T], bool],\n iterable: Iterable[T],\n ) -> List[Tuple[T,T]]\n\nConvert a sequence of totally-ordered values to a minimal list of closed\nintervals (represented as pairs of endpoints) that together contain all of the\ninput elements. This is a generalization of ``derange()`` for arbitrary types.\n\nTwo input values will be placed in the same interval iff they are directly\nadjacent or there exists a chain of adjacent input values connecting them,\nwhere adjacency is defined by the given ``adjacent`` callable.\n\n``adjacent`` will be called with two elements of ``iterable`` at a time to test\nwhether they should be placed in the same interval. The binary relation\nimplied by ``adjacent`` must be reflexive and symmetric, and for all ``x < y <\nz``, if ``adjacent(x, z)`` is true, then both ``adjacent(x, y)`` and\n``adjacent(y, z)`` must also be true.\n\nOutput is in strictly ascending order. Input need not be in order (but see\nalso ``deinterval_sorted()``). Duplicate input values are ignored.\n\nNote that, unlike with ``range`` objects, intervals returned from\n``deinterval()`` contain their upper bounds.\n\n.. code:: python\n\n derange.deinterval_sorted(\n adjacent: Callable[[T,T], bool],\n iterable: Iterable[T],\n ) -> List[Tuple[T,T]]\n\nConvert a *non-decreasing* sequence of totally-ordered values to a minimal list\nof closed intervals that together contain all of the input elements. This is\nfaster than ``deinterval()`` but only accepts sorted input.\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Compress lists of integers to range objects",
"version": "0.2.2",
"project_urls": {
"Bug Tracker": "https://github.com/jwodder/derange/issues",
"Source Code": "https://github.com/jwodder/derange"
},
"split_keywords": [
"compression",
" connected component",
" consecutive",
" distribution sort",
" gaps and islands",
" interval",
" range",
" sequential",
" sorting",
" sparse array",
" streak"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "ebff772aad717d2dfbdd7b542c684d5584a622ab4d38c16e56381830abd9d7b7",
"md5": "afa95a22e609a12dc00aac8b83eb9c8c",
"sha256": "9debeae0e8448db6e5124b77d3583df27fc6bcea9a5a1e2b5309ca3b1ebf4dc3"
},
"downloads": -1,
"filename": "derange-0.2.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "afa95a22e609a12dc00aac8b83eb9c8c",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 6499,
"upload_time": "2024-12-01T12:36:44",
"upload_time_iso_8601": "2024-12-01T12:36:44.318294Z",
"url": "https://files.pythonhosted.org/packages/eb/ff/772aad717d2dfbdd7b542c684d5584a622ab4d38c16e56381830abd9d7b7/derange-0.2.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b044494faaed0f858a814ea379d2feb6e97dc37cade82e7350d02cb1298b4512",
"md5": "6aedfc7acf4004a8092c8cd1b8674fd6",
"sha256": "2222fa464ace9f94f65ed03a6cd384bbe8aad5f399f5c16c50e76c7880db504e"
},
"downloads": -1,
"filename": "derange-0.2.2.tar.gz",
"has_sig": false,
"md5_digest": "6aedfc7acf4004a8092c8cd1b8674fd6",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 7895,
"upload_time": "2024-12-01T12:36:50",
"upload_time_iso_8601": "2024-12-01T12:36:50.067062Z",
"url": "https://files.pythonhosted.org/packages/b0/44/494faaed0f858a814ea379d2feb6e97dc37cade82e7350d02cb1298b4512/derange-0.2.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-01 12:36:50",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "jwodder",
"github_project": "derange",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"tox": true,
"lcname": "derange"
}