Name | dfquick JSON |
Version |
0.1.4
JSON |
| download |
home_page | None |
Summary | Library to create custom dataframe quickly |
upload_time | 2024-03-30 14:49:05 |
maintainer | None |
docs_url | None |
author | Marcel Tino |
requires_python | None |
license | None |
keywords |
dataframe
quick
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
[English](README.md) | [Español](./docs/README.es.md) | [Français](./docs/README.fr.md) | [Deutsch](./docs/README.de.md) | [中文](./docs/README.zh.md) | [Türkçe](./docs/README.tr.md) | [日本語](./docs/README.ja.md) | [한국어](./docs/README.ko.md)
# DFQUICK
A library to create quick custom dataframe. You can create integer columns, category columns and Data Columns easilys
Developed by Marcel Tino (c) 2024
## Examples of How To Use the library
You can use this to alter according to your requirements
```
##syntax
int_column(column name,starting value, ending value, count of rows)
cat_column(column name, Values in a list, count of rows, Probablities of each occurence (Optional))
random_dates(column name,starting date, ending date, count of rows
```
```python
import pandas as pd
from dfquick import int_column
from dfquick import cat_column
from dfquick import random_dates
data=int_column("column1", 1, 500, 500)
data=cat_column("Column2",['A','B','C','D'],500,['0.25','0.5','0.1','0.15'])
data=random_dates("Dates",'2020-05-10','2022-05-10',500)
```
Note: We can create the dataframe using the name data only. You can alter the name later
+ Share retail_dictionary on these social media platforms if you like it!
[![Reddit](https://img.shields.io/badge/share%20on-reddit-red?style=flat-square&logo=reddit)](https://reddit.com/submit?url=https://github.com/Kanaries/pygwalker&title=Say%20Hello%20to%20pygwalker%3A%20Combining%20Jupyter%20Notebook%20with%20a%20Tableau-like%20UI)
[![HackerNews](https://img.shields.io/badge/share%20on-hacker%20news-orange?style=flat-square&logo=ycombinator)](https://news.ycombinator.com/submitlink?u=https://github.com/Kanaries/pygwalker)
[![Twitter](https://img.shields.io/badge/share%20on-twitter-03A9F4?style=flat-square&logo=twitter)](https://twitter.com/share?url=https://github.com/Kanaries/pygwalker&text=Say%20Hello%20to%20pygwalker%3A%20Combining%20Jupyter%20Notebook%20with%20a%20Tableau-alternative%20UI)
[![Facebook](https://img.shields.io/badge/share%20on-facebook-1976D2?style=flat-square&logo=facebook)](https://www.facebook.com/sharer/sharer.php?u=https://github.com/Kanaries/pygwalker)
[![LinkedIn](https://img.shields.io/badge/share%20on-linkedin-3949AB?style=flat-square&logo=linkedin)](https://www.linkedin.com/shareArticle?url=https://github.com/Kanaries/pygwalker&&title=Say%20Hello%20to%20pygwalker%3A%20Combining%20Jupyter%20Notebook%20with%20a%20Tableau-alternative%20UI)
Raw data
{
"_id": null,
"home_page": null,
"name": "dfquick",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "dataframe, quick",
"author": "Marcel Tino",
"author_email": "<marceltino92@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/c0/08/7f4c9759132bbd1c88f223442b4577bd0bc560ce7d51626d8ef6cf1dd3d2/dfquick-0.1.4.tar.gz",
"platform": null,
"description": "\r\n[English](README.md) | [Espa\u00f1ol](./docs/README.es.md) | [Fran\u00e7ais](./docs/README.fr.md) | [Deutsch](./docs/README.de.md) | [\u4e2d\u6587](./docs/README.zh.md) | [T\u00fcrk\u00e7e](./docs/README.tr.md) | [\u65e5\u672c\u8a9e](./docs/README.ja.md) | [\ud55c\uad6d\uc5b4](./docs/README.ko.md)\r\n\r\n# DFQUICK\r\n\r\nA library to create quick custom dataframe. You can create integer columns, category columns and Data Columns easilys\r\n\r\nDeveloped by Marcel Tino (c) 2024\r\n\r\n## Examples of How To Use the library \r\n\r\nYou can use this to alter according to your requirements\r\n\r\n\r\n```\r\n##syntax\r\nint_column(column name,starting value, ending value, count of rows)\r\ncat_column(column name, Values in a list, count of rows, Probablities of each occurence (Optional))\r\nrandom_dates(column name,starting date, ending date, count of rows\r\n\r\n```\r\n\r\n\r\n```python\r\n\r\nimport pandas as pd\r\nfrom dfquick import int_column\r\nfrom dfquick import cat_column\r\nfrom dfquick import random_dates \r\n\r\ndata=int_column(\"column1\", 1, 500, 500)\r\ndata=cat_column(\"Column2\",['A','B','C','D'],500,['0.25','0.5','0.1','0.15'])\r\ndata=random_dates(\"Dates\",'2020-05-10','2022-05-10',500)\r\n\r\n```\r\n\r\nNote: We can create the dataframe using the name data only. You can alter the name later\r\n\r\n\r\n+ Share retail_dictionary on these social media platforms if you like it!\r\n[![Reddit](https://img.shields.io/badge/share%20on-reddit-red?style=flat-square&logo=reddit)](https://reddit.com/submit?url=https://github.com/Kanaries/pygwalker&title=Say%20Hello%20to%20pygwalker%3A%20Combining%20Jupyter%20Notebook%20with%20a%20Tableau-like%20UI)\r\n[![HackerNews](https://img.shields.io/badge/share%20on-hacker%20news-orange?style=flat-square&logo=ycombinator)](https://news.ycombinator.com/submitlink?u=https://github.com/Kanaries/pygwalker)\r\n[![Twitter](https://img.shields.io/badge/share%20on-twitter-03A9F4?style=flat-square&logo=twitter)](https://twitter.com/share?url=https://github.com/Kanaries/pygwalker&text=Say%20Hello%20to%20pygwalker%3A%20Combining%20Jupyter%20Notebook%20with%20a%20Tableau-alternative%20UI)\r\n[![Facebook](https://img.shields.io/badge/share%20on-facebook-1976D2?style=flat-square&logo=facebook)](https://www.facebook.com/sharer/sharer.php?u=https://github.com/Kanaries/pygwalker)\r\n[![LinkedIn](https://img.shields.io/badge/share%20on-linkedin-3949AB?style=flat-square&logo=linkedin)](https://www.linkedin.com/shareArticle?url=https://github.com/Kanaries/pygwalker&&title=Say%20Hello%20to%20pygwalker%3A%20Combining%20Jupyter%20Notebook%20with%20a%20Tableau-alternative%20UI)\r\n",
"bugtrack_url": null,
"license": null,
"summary": "Library to create custom dataframe quickly",
"version": "0.1.4",
"project_urls": null,
"split_keywords": [
"dataframe",
" quick"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "61807e4867a63d50c53171a2e63ce44f33ed121cbb4d6cbb5913b40aae98e366",
"md5": "5f8f61a9fae0c06c36b4cfe2797bff90",
"sha256": "c3839241bfcc785e1071ca3a271450dea43f7a71ba37e63ff545e50f456dd539"
},
"downloads": -1,
"filename": "dfquick-0.1.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "5f8f61a9fae0c06c36b4cfe2797bff90",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 2896,
"upload_time": "2024-03-30T14:49:04",
"upload_time_iso_8601": "2024-03-30T14:49:04.157741Z",
"url": "https://files.pythonhosted.org/packages/61/80/7e4867a63d50c53171a2e63ce44f33ed121cbb4d6cbb5913b40aae98e366/dfquick-0.1.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c0087f4c9759132bbd1c88f223442b4577bd0bc560ce7d51626d8ef6cf1dd3d2",
"md5": "33b65df36d74bf88dd8177c2a5e5776a",
"sha256": "7d501195318710de682ddd2bb3d28b3f654230baeae112fa61e032bdff0e9ba3"
},
"downloads": -1,
"filename": "dfquick-0.1.4.tar.gz",
"has_sig": false,
"md5_digest": "33b65df36d74bf88dd8177c2a5e5776a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 2934,
"upload_time": "2024-03-30T14:49:05",
"upload_time_iso_8601": "2024-03-30T14:49:05.964275Z",
"url": "https://files.pythonhosted.org/packages/c0/08/7f4c9759132bbd1c88f223442b4577bd0bc560ce7d51626d8ef6cf1dd3d2/dfquick-0.1.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-03-30 14:49:05",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "dfquick"
}