dibs-datasource-csv


Namedibs-datasource-csv JSON
Version 1.0.1 PyPI version JSON
download
home_pageNone
SummaryThis package translates CSV date files to DIBS input. DIBS---Dynamic-ISO-Building-Simulator is a simulation program for calculating the space heating, occupancy hot water, cooling and electricity demand of German non-residential buildings. Further the DIBS calculates the heating value based energy uses, the primary energy and the greenhouse gas emission. The underlying resistance-capacity-model is based on the simplified hourly method of ISO 13790:2008.
upload_time2024-03-21 13:48:23
maintainerNone
docs_urlNone
authorSimon Knoll, Michael Hörner
requires_python>=3.10.0
licenseNone
keywords building building-stock non-domestic non-residential operational energy greenhouse gas global warming potential simulation model germany iso 13790 5r1c
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # DibsDataSourceCSV

## Overview

This repository contains a set of utilities `utils` and a Python file named `datasource_csv`. The primary purpose
of `datasource_csv` is to provide functionality for handling Excel and CSV files, performing
calculations on data and returning objects as results. `DataSourceCSV`implements the `DataSource` interface defined in
another module called `dibs_computing_core`.

## File Structure

- **utils/**: This directory contains several Python files, each housing methods that are utilized
  within `datasource_csv`.
- **datasource_csv.py**: This Python file implements the `DataSource` interface, defined in `dibs_computing_core`, to
  interact with Excel and CSV files, converting them into appropriate objects (performing
  calculations on data and returning objects
  as results.)

### Arguments:

- `path`: Path to the file containing building data type of `str`. (Required)
- `profile_from_norm`: type of `str`. (Optional)
- `gains_from_group_values`: type of `str`. (Optional)
- `usage_from_norm`: type of `str`. (Optional)
- `weather_period`: type of `str`. (Optional)

## Usage

To use the functionalities provided by this repository, follow these steps:

1. **Installation**: Use pip to install the module. This will automatically install the required dependencies
   mentioned in `pyproject.toml`.

    ```bash
    pip install dibs_datasource_csv
    ```

2. **Importing DatasourceCSV**: You can import and use the `DataSourceCSV` class directly from the terminal or any
   Python
   environment.

    ```bash
    python
    ```

    ```python
   from dibs_computing_core.iso_simulator.dibs.dibs import DIBS
   from dibs_datasource_csv.datasource_csv import DataSourceCSV
   import dibs_data
   ```


1. **Performing Simulation**: Use the methods provided in `dibs class` (`calculate_result_of_one_building`
   or `multi`) to perform calculations on your data. The method `calculate_result_of_one_building` simulates one
   building and `multi` simulates multiple building simultaneously for more performance.

    ```python
    # Example usage
    datasource_csv = DataSourceCSV(path="path_to_your_data", "din18599", "mid", "sia2024", "2007-2021") or 
    datasource_csv = DataSourceCSV(path="path_to_your_data", profile_from_norm="din18599", gains_from_group_values="mid", usage_from_norm="sia2024", weather_period="2007-2021")
   
    dibs = DIBS(datasource_csv)
   
    simulation_time, result_of_all_hours, summary_result = dibs.calculate_result_of_one_building()
   
    # To see the hourly result of the simulated building
    print(result_of_all_hours)
   
    # To see the summary result of the simulated building
    print(summary_result)
   ```

## Contributing

Contributions to this repository are welcome. If you find any bugs, have feature requests, or want to contribute
enhancements, feel free to open an issue or submit a pull request.

## License

This repository is licensed under the [MIT License](LICENSE). Feel free to use, modify, and distribute the code as per
the terms of this license.

## Acknowledgments

Special thanks to contributors and maintainers who have helped shape and improve this repository. Your efforts are
greatly appreciated.


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "dibs-datasource-csv",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10.0",
    "maintainer_email": null,
    "keywords": "Building, Building-Stock, Non-Domestic, Non-Residential, Operational, Energy, Greenhouse Gas, Global Warming Potential, Simulation, Model, Germany, ISO 13790, 5R1C",
    "author": "Simon Knoll, Michael H\u00f6rner",
    "author_email": "Julian Bischof <j.bischof@iwu.de>, Wail Samjouni <w.samjouni@iwu.de>, Andr\u00e9 M\u00fcller <a.mueller@iwu.de>, Jens Calisti <j.calisti@iwu.de>",
    "download_url": "https://files.pythonhosted.org/packages/ad/03/48bc2b55b4758e5a970559c7b4a7ca21add786be418fc90a4d9b60f2a684/dibs_datasource_csv-1.0.1.tar.gz",
    "platform": null,
    "description": "# DibsDataSourceCSV\n\n## Overview\n\nThis repository contains a set of utilities `utils` and a Python file named `datasource_csv`. The primary purpose\nof `datasource_csv` is to provide functionality for handling Excel and CSV files, performing\ncalculations on data and returning objects as results. `DataSourceCSV`implements the `DataSource` interface defined in\nanother module called `dibs_computing_core`.\n\n## File Structure\n\n- **utils/**: This directory contains several Python files, each housing methods that are utilized\n  within `datasource_csv`.\n- **datasource_csv.py**: This Python file implements the `DataSource` interface, defined in `dibs_computing_core`, to\n  interact with Excel and CSV files, converting them into appropriate objects (performing\n  calculations on data and returning objects\n  as results.)\n\n### Arguments:\n\n- `path`: Path to the file containing building data type of `str`. (Required)\n- `profile_from_norm`: type of `str`. (Optional)\n- `gains_from_group_values`: type of `str`. (Optional)\n- `usage_from_norm`: type of `str`. (Optional)\n- `weather_period`: type of `str`. (Optional)\n\n## Usage\n\nTo use the functionalities provided by this repository, follow these steps:\n\n1. **Installation**: Use pip to install the module. This will automatically install the required dependencies\n   mentioned in `pyproject.toml`.\n\n    ```bash\n    pip install dibs_datasource_csv\n    ```\n\n2. **Importing DatasourceCSV**: You can import and use the `DataSourceCSV` class directly from the terminal or any\n   Python\n   environment.\n\n    ```bash\n    python\n    ```\n\n    ```python\n   from dibs_computing_core.iso_simulator.dibs.dibs import DIBS\n   from dibs_datasource_csv.datasource_csv import DataSourceCSV\n   import dibs_data\n   ```\n\n\n1. **Performing Simulation**: Use the methods provided in `dibs class` (`calculate_result_of_one_building`\n   or `multi`) to perform calculations on your data. The method `calculate_result_of_one_building` simulates one\n   building and `multi` simulates multiple building simultaneously for more performance.\n\n    ```python\n    # Example usage\n    datasource_csv = DataSourceCSV(path=\"path_to_your_data\", \"din18599\", \"mid\", \"sia2024\", \"2007-2021\") or \n    datasource_csv = DataSourceCSV(path=\"path_to_your_data\", profile_from_norm=\"din18599\", gains_from_group_values=\"mid\", usage_from_norm=\"sia2024\", weather_period=\"2007-2021\")\n   \n    dibs = DIBS(datasource_csv)\n   \n    simulation_time, result_of_all_hours, summary_result = dibs.calculate_result_of_one_building()\n   \n    # To see the hourly result of the simulated building\n    print(result_of_all_hours)\n   \n    # To see the summary result of the simulated building\n    print(summary_result)\n   ```\n\n## Contributing\n\nContributions to this repository are welcome. If you find any bugs, have feature requests, or want to contribute\nenhancements, feel free to open an issue or submit a pull request.\n\n## License\n\nThis repository is licensed under the [MIT License](LICENSE). Feel free to use, modify, and distribute the code as per\nthe terms of this license.\n\n## Acknowledgments\n\nSpecial thanks to contributors and maintainers who have helped shape and improve this repository. Your efforts are\ngreatly appreciated.\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "This package translates CSV date files to DIBS input. DIBS---Dynamic-ISO-Building-Simulator is a simulation program for calculating the space heating, occupancy hot water, cooling and electricity demand of German non-residential buildings. Further the DIBS calculates the heating value based energy uses, the primary energy and the greenhouse gas emission. The underlying resistance-capacity-model is based on the simplified hourly method of ISO 13790:2008.",
    "version": "1.0.1",
    "project_urls": {
        "Repository": "https://github.com/IWUGERMANY/DibsDataSourceCSV"
    },
    "split_keywords": [
        "building",
        " building-stock",
        " non-domestic",
        " non-residential",
        " operational",
        " energy",
        " greenhouse gas",
        " global warming potential",
        " simulation",
        " model",
        " germany",
        " iso 13790",
        " 5r1c"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c722904e7c194bd852112076550f9bbd98da60ee80445a2ffbb692a8bd2eee14",
                "md5": "252b75d8b1c58401a950e0454e25e2e3",
                "sha256": "35b9e4d11885f3a7d218b247fcbd72c3d7177a78711983aba5864ce5b5c5d966"
            },
            "downloads": -1,
            "filename": "dibs_datasource_csv-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "252b75d8b1c58401a950e0454e25e2e3",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10.0",
            "size": 11612,
            "upload_time": "2024-03-21T13:48:21",
            "upload_time_iso_8601": "2024-03-21T13:48:21.849936Z",
            "url": "https://files.pythonhosted.org/packages/c7/22/904e7c194bd852112076550f9bbd98da60ee80445a2ffbb692a8bd2eee14/dibs_datasource_csv-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ad0348bc2b55b4758e5a970559c7b4a7ca21add786be418fc90a4d9b60f2a684",
                "md5": "05aa842e618402d03751d1d2f6974d58",
                "sha256": "c62e2a609b4eae971c65bec051afae6b95c9a01187cc1265275c00fd2016fa57"
            },
            "downloads": -1,
            "filename": "dibs_datasource_csv-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "05aa842e618402d03751d1d2f6974d58",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10.0",
            "size": 10253,
            "upload_time": "2024-03-21T13:48:23",
            "upload_time_iso_8601": "2024-03-21T13:48:23.159345Z",
            "url": "https://files.pythonhosted.org/packages/ad/03/48bc2b55b4758e5a970559c7b4a7ca21add786be418fc90a4d9b60f2a684/dibs_datasource_csv-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-21 13:48:23",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "IWUGERMANY",
    "github_project": "DibsDataSourceCSV",
    "github_not_found": true,
    "lcname": "dibs-datasource-csv"
}
        
Elapsed time: 2.34911s