dictlearn


Namedictlearn JSON
Version 0.2.2 PyPI version JSON
download
home_pagehttps://gitlab.com/unibuc/graphomaly/dictionary-learning
SummaryDictionary Learning Toolbox
upload_time2024-04-09 10:28:47
maintainerNone
docs_urlNone
authorPaul Irofti, Denis Ilie-Ablachim, Bogdan Dumitrescu
requires_python>=3.6
licenseNone
keywords dictionary learning sparse representations machine learning signal processing
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Dictionary Learning Toolbox

Official documentation [here](https://unibuc.gitlab.io/graphomaly/dictionary-learning/).

This work was supported in part by the [Graphomaly Research Grant](http://graphomaly.upb.ro/)
and is based on the [Matlab Dictionary Learning Toolbox](https://gitlab.com/pirofti/dl-box)
that accompanied the Springer book mentioned bellow.

If you use our work in your research, please cite as:

B. Dumitrescu and P. Irofti, Dictionary Learning Algorithms and Applications, Springer, 2018
```
@book{DL_book,
author    = {Dumitrescu, B. and Irofti, P.},
title     = {Dictionary Learning Algorithms and Applications},
year      = {2018},
publisher = {Springer},
}
```

## Installation and setup
Install via pip from the [PyPi repository](https://pypi.org/project/dictlearn/):
```
pip install dictlearn
```

or for the latest changes not yet in the official release:
```
pip install git+https://gitlab.com/unibuc/graphomaly/dictionary-learning
```

## Usage

The package follows the [sklearn](https://scikit-learn.org/) API and can be included in your projects via
```
from dictlearn import DictionaryLearning
```
which will provide you with a standard scikit-learn estimator that you can use in your pipeline.

### Example

```
import matplotlib.pyplot as plt

from dictlearn import DictionaryLearning
from sklearn.datasets import make_sparse_coded_signal

n_components = 50      # number of atoms
n_features = 20        # signal dimension
n_nonzero_coefs = 3    # sparsity
n_samples = 100        # number of signals
n_iterations = 20      # number of dictionary learning iterations

max_iter = 10
fit_algorithm = "aksvd"
transform_algorithm = "omp"

Y, D_origin, X_origin = make_sparse_coded_signal(
    n_samples=n_samples,
    n_components=n_components,
    n_features=n_features,
    n_nonzero_coefs=n_nonzero_coefs,
    random_state=0
)

dl = DictionaryLearning(
    n_components=n_components,
    max_iter=max_iter,
    fit_algorithm=fit_algorithm,
    transform_algorithm=transform_algorithm,
    n_nonzero_coefs=n_nonzero_coefs,
    code_init=None,
    dict_init=None,
    verbose=False,
    random_state=None,
    kernel_function=None,
    params=None,
    data_sklearn_compat=False
)

dl.fit(Y)

plt.plot(range(max_iter), dl.error_, label=fit_algorithm)
plt.legend()
plt.show()
```

For configuration and tweaks please consult the [documentation](https://unibuc.gitlab.io/graphomaly/dictionary-learning/).

## Development and testing

First clone the repository and change directory to the root of your fresh checkout.

#### 0. Install Prerequisites
Install PyPA’s [build](https://packaging.python.org/en/latest/key_projects/#build):
```
python3 -m pip install --upgrade build
```

#### 1. Build
Inside the `dictonary-learning` directory
```
python -m build
```

#### 2. Virtual Environment

Create a virtual environment with Python:
```
python -m venv venv
```

Activate the environment:
```
source venv/bin/activate
```

For Windows execute instead:
```
venv\Scripts\activate
```

#### 3. Install
Inside the virutal environment execute:
```
pip install dist/dictlearn-*.whl
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://gitlab.com/unibuc/graphomaly/dictionary-learning",
    "name": "dictlearn",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "dictionary learning, sparse representations, machine learning, signal processing",
    "author": "Paul Irofti, Denis Ilie-Ablachim, Bogdan Dumitrescu",
    "author_email": "graphomaly@fmi.unibuc.ro",
    "download_url": "https://files.pythonhosted.org/packages/04/da/bc4d470cc9cbd9f7f628049ded4e66bc4fe0dcf287f10fb56bd08969b236/dictlearn-0.2.2.tar.gz",
    "platform": null,
    "description": "# Dictionary Learning Toolbox\n\nOfficial documentation [here](https://unibuc.gitlab.io/graphomaly/dictionary-learning/).\n\nThis work was supported in part by the [Graphomaly Research Grant](http://graphomaly.upb.ro/)\nand is based on the [Matlab Dictionary Learning Toolbox](https://gitlab.com/pirofti/dl-box)\nthat accompanied the Springer book mentioned bellow.\n\nIf you use our work in your research, please cite as:\n\nB. Dumitrescu and P. Irofti, Dictionary Learning Algorithms and Applications, Springer, 2018\n```\n@book{DL_book,\nauthor    = {Dumitrescu, B. and Irofti, P.},\ntitle     = {Dictionary Learning Algorithms and Applications},\nyear      = {2018},\npublisher = {Springer},\n}\n```\n\n## Installation and setup\nInstall via pip from the [PyPi repository](https://pypi.org/project/dictlearn/):\n```\npip install dictlearn\n```\n\nor for the latest changes not yet in the official release:\n```\npip install git+https://gitlab.com/unibuc/graphomaly/dictionary-learning\n```\n\n## Usage\n\nThe package follows the [sklearn](https://scikit-learn.org/) API and can be included in your projects via\n```\nfrom dictlearn import DictionaryLearning\n```\nwhich will provide you with a standard scikit-learn estimator that you can use in your pipeline.\n\n### Example\n\n```\nimport matplotlib.pyplot as plt\n\nfrom dictlearn import DictionaryLearning\nfrom sklearn.datasets import make_sparse_coded_signal\n\nn_components = 50      # number of atoms\nn_features = 20        # signal dimension\nn_nonzero_coefs = 3    # sparsity\nn_samples = 100        # number of signals\nn_iterations = 20      # number of dictionary learning iterations\n\nmax_iter = 10\nfit_algorithm = \"aksvd\"\ntransform_algorithm = \"omp\"\n\nY, D_origin, X_origin = make_sparse_coded_signal(\n    n_samples=n_samples,\n    n_components=n_components,\n    n_features=n_features,\n    n_nonzero_coefs=n_nonzero_coefs,\n    random_state=0\n)\n\ndl = DictionaryLearning(\n    n_components=n_components,\n    max_iter=max_iter,\n    fit_algorithm=fit_algorithm,\n    transform_algorithm=transform_algorithm,\n    n_nonzero_coefs=n_nonzero_coefs,\n    code_init=None,\n    dict_init=None,\n    verbose=False,\n    random_state=None,\n    kernel_function=None,\n    params=None,\n    data_sklearn_compat=False\n)\n\ndl.fit(Y)\n\nplt.plot(range(max_iter), dl.error_, label=fit_algorithm)\nplt.legend()\nplt.show()\n```\n\nFor configuration and tweaks please consult the [documentation](https://unibuc.gitlab.io/graphomaly/dictionary-learning/).\n\n## Development and testing\n\nFirst clone the repository and change directory to the root of your fresh checkout.\n\n#### 0. Install Prerequisites\nInstall PyPA\u2019s [build](https://packaging.python.org/en/latest/key_projects/#build):\n```\npython3 -m pip install --upgrade build\n```\n\n#### 1. Build\nInside the `dictonary-learning` directory\n```\npython -m build\n```\n\n#### 2. Virtual Environment\n\nCreate a virtual environment with Python:\n```\npython -m venv venv\n```\n\nActivate the environment:\n```\nsource venv/bin/activate\n```\n\nFor Windows execute instead:\n```\nvenv\\Scripts\\activate\n```\n\n#### 3. Install\nInside the virutal environment execute:\n```\npip install dist/dictlearn-*.whl\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Dictionary Learning Toolbox",
    "version": "0.2.2",
    "project_urls": {
        "Bug Tracker": "https://gitlab.com/unibuc/graphomaly/dictionary-learning/-/issues",
        "Homepage": "https://gitlab.com/unibuc/graphomaly/dictionary-learning"
    },
    "split_keywords": [
        "dictionary learning",
        " sparse representations",
        " machine learning",
        " signal processing"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9240c93857534fe8415025aa18373d02af734bcbb577d7f1254ae8b2088e57db",
                "md5": "91ec48bf683b8fe05d163363e017ebf7",
                "sha256": "afa92c83f6ec7d27f01c12fbeae91838aae29ab74b33b257697f852884a51835"
            },
            "downloads": -1,
            "filename": "dictlearn-0.2.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "91ec48bf683b8fe05d163363e017ebf7",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 55946,
            "upload_time": "2024-04-09T10:28:45",
            "upload_time_iso_8601": "2024-04-09T10:28:45.682207Z",
            "url": "https://files.pythonhosted.org/packages/92/40/c93857534fe8415025aa18373d02af734bcbb577d7f1254ae8b2088e57db/dictlearn-0.2.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "04dabc4d470cc9cbd9f7f628049ded4e66bc4fe0dcf287f10fb56bd08969b236",
                "md5": "196dfefe60e83036aabef179ad4a4ed0",
                "sha256": "014391e31e9ed87e530a293a780411d41d9805ef306eac5e4cfa090e9fc10769"
            },
            "downloads": -1,
            "filename": "dictlearn-0.2.2.tar.gz",
            "has_sig": false,
            "md5_digest": "196dfefe60e83036aabef179ad4a4ed0",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 44859,
            "upload_time": "2024-04-09T10:28:47",
            "upload_time_iso_8601": "2024-04-09T10:28:47.186236Z",
            "url": "https://files.pythonhosted.org/packages/04/da/bc4d470cc9cbd9f7f628049ded4e66bc4fe0dcf287f10fb56bd08969b236/dictlearn-0.2.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-09 10:28:47",
    "github": false,
    "gitlab": true,
    "bitbucket": false,
    "codeberg": false,
    "gitlab_user": "unibuc",
    "gitlab_project": "graphomaly",
    "lcname": "dictlearn"
}
        
Elapsed time: 0.33905s