Name | dimarray JSON |
Version |
1.2
JSON |
| download |
home_page | |
Summary | numpy array with labelled dimensions and axes, dimension, NaN handling and netCDF I/O |
upload_time | 2023-03-20 10:38:17 |
maintainer | |
docs_url | https://pythonhosted.org/dimarray/ |
author | |
requires_python | >=3.7 |
license | BSD-3-Clause |
keywords |
labelled array
numpy
larry
pandas
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
Introduction
============
.. image:: https://travis-ci.org/perrette/dimarray.svg?branch=master
:target: https://travis-ci.org/perrette/dimarray
Numpy array with dimensions
---------------------------
dimarray is a package to handle numpy arrays with labelled dimensions and axes.
Inspired from pandas, it includes advanced alignment and reshaping features and
as well as missing-value (NaN) handling.
The main difference with pandas is that it is generalized to N dimensions, and behaves more closely to a numpy array.
The axes do not have fixed names ('index', 'columns', etc...) but are
given a meaningful name by the user (e.g. 'time', 'items', 'lon' ...).
This is especially useful for high dimensional problems such as sensitivity analyses.
A natural I/O format for such an array is netCDF, common in geophysics, which relies on
the netCDF4 package, and supports metadata.
License
-------
dimarray is distributed under a 3-clause ("Simplified" or "New") BSD
license. Parts of basemap which have BSD compatible licenses are included.
See the LICENSE file, which is distributed with the dimarray package, for details.
Getting started
---------------
A **``DimArray``** can be defined just like a numpy array, with
additional information about its dimensions, which can be provided
via its `axes` and `dims` parameters:
>>> from dimarray import DimArray
>>> a = DimArray([[1.,2,3], [4,5,6]], axes=[['a', 'b'], [1950, 1960, 1970]], dims=['variable', 'time'])
>>> a
dimarray: 6 non-null elements (0 null)
0 / variable (2): 'a' to 'b'
1 / time (3): 1950 to 1970
array([[1., 2., 3.],
[4., 5., 6.]])
Indexing now works on axes
>>> a['b', 1970]
6.0
Or can just be done **a la numpy**, via integer index:
>>> a.ix[0, -1]
3.0
Basic numpy transformations are also in there:
>>> a.mean(axis='time')
dimarray: 2 non-null elements (0 null)
0 / variable (2): 'a' to 'b'
array([2., 5.])
Can export to `pandas` for pretty printing:
>>> a.to_pandas()
time 1950 1960 1970
variable
a 1.0 2.0 3.0
b 4.0 5.0 6.0
.. _links:
Useful links
------------
================================ ====================================
Documentation http://dimarray.readthedocs.org
Code on github (bleeding edge) https://github.com/perrette/dimarray
Code on pypi (releases) https://pypi.python.org/pypi/dimarray
Issues Tracker https://github.com/perrette/dimarray/issues
================================ ====================================
Install
-------
**Requirements**:
- python >= 2.7, 3
- numpy (tested with 1.7, 1.8, 1.9, 1.10.1, 1.15)
**Optional**:
- netCDF4 (tested with 1.0.8, 1.2.1) (netCDF archiving) (see notes below)
- matplotlib 1.1 (plotting)
- pandas 0.11 (interface with pandas)
Download the latest version from github and extract from archive
Then from the dimarray repository type (possibly preceded by sudo):
.. code:: bash
python setup.py install
Alternatively, you can use pip to download and install the version from pypi (could be slightly out-of-date):
.. code:: bash
pip install dimarray
Notes on installing netCDF4
^^^^^^^^^^^^^^^^^^^^^^^^^^^
- On Ubuntu, using apt-get is the easiest way (as indicated at https://github.com/Unidata/netcdf4-python/blob/master/.travis.yml):
.. code:: bash
sudo apt-get install libhdf5-serial-dev netcdf-bin libnetcdf-dev
- On windows binaries are available: http://www.unidata.ucar.edu/software/netcdf/docs/winbin.html
- From source. Installing the netCDF4 python module from source can be cumbersome, because
it depends on netCDF4 and (especially) HDF5 C libraries that need to
be compiled with specific flags (http://unidata.github.io/netcdf4-python).
Detailled information on Ubuntu: https://code.google.com/p/netcdf4-python/wiki/UbuntuInstall
Contributions
-------------
All suggestions for improvement or direct contributions are very welcome.
You can open an `issue` on github for specific requests.
Raw data
{
"_id": null,
"home_page": "",
"name": "dimarray",
"maintainer": "",
"docs_url": "https://pythonhosted.org/dimarray/",
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "labelled array,numpy,larry,pandas",
"author": "",
"author_email": "Mah\u00e9 Perrette <mahe.perrette@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/9d/9f/41425ad21bc6203cf71de165ef4276a763745e443f45988fcc5ed3b1ed1e/dimarray-1.2.tar.gz",
"platform": null,
"description": "Introduction\n============\n\n.. image:: https://travis-ci.org/perrette/dimarray.svg?branch=master\n :target: https://travis-ci.org/perrette/dimarray\n\nNumpy array with dimensions\n---------------------------\ndimarray is a package to handle numpy arrays with labelled dimensions and axes. \nInspired from pandas, it includes advanced alignment and reshaping features and \nas well as missing-value (NaN) handling.\n\nThe main difference with pandas is that it is generalized to N dimensions, and behaves more closely to a numpy array. \nThe axes do not have fixed names ('index', 'columns', etc...) but are \ngiven a meaningful name by the user (e.g. 'time', 'items', 'lon' ...). \nThis is especially useful for high dimensional problems such as sensitivity analyses.\n\nA natural I/O format for such an array is netCDF, common in geophysics, which relies on \nthe netCDF4 package, and supports metadata.\n\n\nLicense\n-------\ndimarray is distributed under a 3-clause (\"Simplified\" or \"New\") BSD\nlicense. Parts of basemap which have BSD compatible licenses are included.\nSee the LICENSE file, which is distributed with the dimarray package, for details.\n\nGetting started\n---------------\n\nA **``DimArray``** can be defined just like a numpy array, with\nadditional information about its dimensions, which can be provided\nvia its `axes` and `dims` parameters:\n\n>>> from dimarray import DimArray\n>>> a = DimArray([[1.,2,3], [4,5,6]], axes=[['a', 'b'], [1950, 1960, 1970]], dims=['variable', 'time']) \n>>> a\ndimarray: 6 non-null elements (0 null)\n0 / variable (2): 'a' to 'b'\n1 / time (3): 1950 to 1970\narray([[1., 2., 3.],\n [4., 5., 6.]])\n\nIndexing now works on axes\n\n>>> a['b', 1970]\n6.0\n\nOr can just be done **a la numpy**, via integer index:\n\n>>> a.ix[0, -1]\n3.0\n\nBasic numpy transformations are also in there:\n\n>>> a.mean(axis='time')\ndimarray: 2 non-null elements (0 null)\n0 / variable (2): 'a' to 'b'\narray([2., 5.])\n\nCan export to `pandas` for pretty printing:\n\n>>> a.to_pandas()\ntime 1950 1960 1970\nvariable \na 1.0 2.0 3.0\nb 4.0 5.0 6.0\n\n\n.. _links:\n\nUseful links\n------------\n================================ ====================================\nDocumentation http://dimarray.readthedocs.org\nCode on github (bleeding edge) https://github.com/perrette/dimarray\nCode on pypi (releases) https://pypi.python.org/pypi/dimarray\nIssues Tracker https://github.com/perrette/dimarray/issues\n================================ ====================================\n\nInstall\n-------\n\n**Requirements**:\n\n- python >= 2.7, 3\n- numpy (tested with 1.7, 1.8, 1.9, 1.10.1, 1.15)\n\n**Optional**:\n\n- netCDF4 (tested with 1.0.8, 1.2.1) (netCDF archiving) (see notes below)\n- matplotlib 1.1 (plotting)\n- pandas 0.11 (interface with pandas)\n\nDownload the latest version from github and extract from archive\nThen from the dimarray repository type (possibly preceded by sudo):\n\n.. code:: bash\n \n python setup.py install \n\nAlternatively, you can use pip to download and install the version from pypi (could be slightly out-of-date):\n\n.. code:: bash\n\n pip install dimarray \n\n\nNotes on installing netCDF4\n^^^^^^^^^^^^^^^^^^^^^^^^^^^\n- On Ubuntu, using apt-get is the easiest way (as indicated at https://github.com/Unidata/netcdf4-python/blob/master/.travis.yml):\n\n\n.. code:: bash\n\n sudo apt-get install libhdf5-serial-dev netcdf-bin libnetcdf-dev\n\n- On windows binaries are available: http://www.unidata.ucar.edu/software/netcdf/docs/winbin.html\n\n- From source. Installing the netCDF4 python module from source can be cumbersome, because \n it depends on netCDF4 and (especially) HDF5 C libraries that need to \n be compiled with specific flags (http://unidata.github.io/netcdf4-python). \n Detailled information on Ubuntu: https://code.google.com/p/netcdf4-python/wiki/UbuntuInstall\n\n\nContributions\n-------------\nAll suggestions for improvement or direct contributions are very welcome.\nYou can open an `issue` on github for specific requests.\n",
"bugtrack_url": null,
"license": "BSD-3-Clause",
"summary": "numpy array with labelled dimensions and axes, dimension, NaN handling and netCDF I/O",
"version": "1.2",
"split_keywords": [
"labelled array",
"numpy",
"larry",
"pandas"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b3df7a01c3d4ab198ca9ec35d85b96124ddf479d49c245c1a8c6922f710411e3",
"md5": "9576af7effdad22a8c9704c3553f6091",
"sha256": "0cc36e08075c809673148c7ad0924e8dbe8a34185fdab136bbfa075bdff3d689"
},
"downloads": -1,
"filename": "dimarray-1.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "9576af7effdad22a8c9704c3553f6091",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 258284,
"upload_time": "2023-03-20T10:38:15",
"upload_time_iso_8601": "2023-03-20T10:38:15.514910Z",
"url": "https://files.pythonhosted.org/packages/b3/df/7a01c3d4ab198ca9ec35d85b96124ddf479d49c245c1a8c6922f710411e3/dimarray-1.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "9d9f41425ad21bc6203cf71de165ef4276a763745e443f45988fcc5ed3b1ed1e",
"md5": "c34c052f7b939830213ed19c61a59b97",
"sha256": "883c01086515ac02ede2ae88f3bede08495ff0c8d7709a22f15e560afd6f7595"
},
"downloads": -1,
"filename": "dimarray-1.2.tar.gz",
"has_sig": false,
"md5_digest": "c34c052f7b939830213ed19c61a59b97",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 674794,
"upload_time": "2023-03-20T10:38:17",
"upload_time_iso_8601": "2023-03-20T10:38:17.702139Z",
"url": "https://files.pythonhosted.org/packages/9d/9f/41425ad21bc6203cf71de165ef4276a763745e443f45988fcc5ed3b1ed1e/dimarray-1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-03-20 10:38:17",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "dimarray"
}