dimensionality-reductions-jmsv


Namedimensionality-reductions-jmsv JSON
Version 0.1.0 PyPI version JSON
download
home_pagehttps://pypi.org/project/dimensionality_reductions_jmsv/#history
SummaryPackage with the PCA, SVD and t-SNE methods for dimensionality reduction
upload_time2023-04-14 16:29:47
maintainerSend_Mail
docs_urlNone
authorMauricio Sierra
requires_python>=3.10,<4.0
licenseMIT
keywords svd pca t-sne
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ![PyPI Latest Release](https://img.shields.io/pypi/v/dimensionality_reductions_jmsv.svg)
![Package Status](https://img.shields.io/pypi/status/dimensionality_reductions_jmsv.svg)
![Python Versions](https://img.shields.io/pypi/pyversions/dimensionality_reductions_jmsv)

### What is it?

**dimensionality_reductions_jmsv** is a Python package that provides three methods (PCA, SVD, t-SNE) to apply dimensionality reduction to any dataset.

### Installing the package

Requests is available on PyPI:

```bash
pip install dimensionality_reductions_jmsv
```

**_Try your first TensorFlow program_**

```python
from dimensionality_reductions_jmsv.decomposition import PCA
import numpy as np

X = (np.random.rand(10, 10) * 10).astype(int)
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)
print("Original Matrix:", '\n', X, '\n')
print("Apply dimensionality reduction with PCA to Original Matrix:", '\n', X_pca)
```

### License
[MIT](https://mit-license.org/)

            

Raw data

            {
    "_id": null,
    "home_page": "https://pypi.org/project/dimensionality_reductions_jmsv/#history",
    "name": "dimensionality-reductions-jmsv",
    "maintainer": "Send_Mail",
    "docs_url": null,
    "requires_python": ">=3.10,<4.0",
    "maintainer_email": "mauricio@gmail.com",
    "keywords": "SVD,PCA,t-SNE",
    "author": "Mauricio Sierra",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/1f/2e/7636ae34c0d3e5d16b913d783910c8d9dc607fb0c195d600cb58792945b3/dimensionality_reductions_jmsv-0.1.0.tar.gz",
    "platform": null,
    "description": "![PyPI Latest Release](https://img.shields.io/pypi/v/dimensionality_reductions_jmsv.svg)\n![Package Status](https://img.shields.io/pypi/status/dimensionality_reductions_jmsv.svg)\n![Python Versions](https://img.shields.io/pypi/pyversions/dimensionality_reductions_jmsv)\n\n### What is it?\n\n**dimensionality_reductions_jmsv** is a Python package that provides three methods (PCA, SVD, t-SNE) to apply dimensionality reduction to any dataset.\n\n### Installing the package\n\nRequests is available on PyPI:\n\n```bash\npip install dimensionality_reductions_jmsv\n```\n\n**_Try your first TensorFlow program_**\n\n```python\nfrom dimensionality_reductions_jmsv.decomposition import PCA\nimport numpy as np\n\nX = (np.random.rand(10, 10) * 10).astype(int)\npca = PCA(n_components=2)\nX_pca = pca.fit_transform(X)\nprint(\"Original Matrix:\", '\\n', X, '\\n')\nprint(\"Apply dimensionality reduction with PCA to Original Matrix:\", '\\n', X_pca)\n```\n\n### License\n[MIT](https://mit-license.org/)\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Package with the PCA, SVD and t-SNE methods for dimensionality reduction",
    "version": "0.1.0",
    "split_keywords": [
        "svd",
        "pca",
        "t-sne"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3861c3967e570f172141101f1c477e98aa883572cc35dfda45dcbe5d39b7927a",
                "md5": "423e1327870416b977b94a2bf83cb03e",
                "sha256": "fe06c87838f6ed7011bbabda7ad0311ed55d29d3a6d8b4fd831f82315c479f30"
            },
            "downloads": -1,
            "filename": "dimensionality_reductions_jmsv-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "423e1327870416b977b94a2bf83cb03e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10,<4.0",
            "size": 4667,
            "upload_time": "2023-04-14T16:29:46",
            "upload_time_iso_8601": "2023-04-14T16:29:46.679022Z",
            "url": "https://files.pythonhosted.org/packages/38/61/c3967e570f172141101f1c477e98aa883572cc35dfda45dcbe5d39b7927a/dimensionality_reductions_jmsv-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1f2e7636ae34c0d3e5d16b913d783910c8d9dc607fb0c195d600cb58792945b3",
                "md5": "ba5615d1f1a4fc9445e5686a56b4ca42",
                "sha256": "b196cb585a6af1b2bb44cbed4b62c76de0832b4cf1fd228c0a4e419841acdc4c"
            },
            "downloads": -1,
            "filename": "dimensionality_reductions_jmsv-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "ba5615d1f1a4fc9445e5686a56b4ca42",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10,<4.0",
            "size": 2955,
            "upload_time": "2023-04-14T16:29:47",
            "upload_time_iso_8601": "2023-04-14T16:29:47.902352Z",
            "url": "https://files.pythonhosted.org/packages/1f/2e/7636ae34c0d3e5d16b913d783910c8d9dc607fb0c195d600cb58792945b3/dimensionality_reductions_jmsv-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-04-14 16:29:47",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "dimensionality-reductions-jmsv"
}
        
Elapsed time: 0.07068s