![PyPI Latest Release](https://img.shields.io/pypi/v/dimensionality_reductions_jmsv.svg)
![Package Status](https://img.shields.io/pypi/status/dimensionality_reductions_jmsv.svg)
![Python Versions](https://img.shields.io/pypi/pyversions/dimensionality_reductions_jmsv)
### What is it?
**dimensionality_reductions_jmsv** is a Python package that provides three methods (PCA, SVD, t-SNE) to apply dimensionality reduction to any dataset.
### Installing the package
Requests is available on PyPI:
```bash
pip install dimensionality_reductions_jmsv
```
**_Try your first TensorFlow program_**
```python
from dimensionality_reductions_jmsv.decomposition import PCA
import numpy as np
X = (np.random.rand(10, 10) * 10).astype(int)
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)
print("Original Matrix:", '\n', X, '\n')
print("Apply dimensionality reduction with PCA to Original Matrix:", '\n', X_pca)
```
### License
[MIT](https://mit-license.org/)
Raw data
{
"_id": null,
"home_page": "https://pypi.org/project/dimensionality_reductions_jmsv/#history",
"name": "dimensionality-reductions-jmsv",
"maintainer": "Send_Mail",
"docs_url": null,
"requires_python": ">=3.10,<4.0",
"maintainer_email": "mauricio@gmail.com",
"keywords": "SVD,PCA,t-SNE",
"author": "Mauricio Sierra",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/1f/2e/7636ae34c0d3e5d16b913d783910c8d9dc607fb0c195d600cb58792945b3/dimensionality_reductions_jmsv-0.1.0.tar.gz",
"platform": null,
"description": "![PyPI Latest Release](https://img.shields.io/pypi/v/dimensionality_reductions_jmsv.svg)\n![Package Status](https://img.shields.io/pypi/status/dimensionality_reductions_jmsv.svg)\n![Python Versions](https://img.shields.io/pypi/pyversions/dimensionality_reductions_jmsv)\n\n### What is it?\n\n**dimensionality_reductions_jmsv** is a Python package that provides three methods (PCA, SVD, t-SNE) to apply dimensionality reduction to any dataset.\n\n### Installing the package\n\nRequests is available on PyPI:\n\n```bash\npip install dimensionality_reductions_jmsv\n```\n\n**_Try your first TensorFlow program_**\n\n```python\nfrom dimensionality_reductions_jmsv.decomposition import PCA\nimport numpy as np\n\nX = (np.random.rand(10, 10) * 10).astype(int)\npca = PCA(n_components=2)\nX_pca = pca.fit_transform(X)\nprint(\"Original Matrix:\", '\\n', X, '\\n')\nprint(\"Apply dimensionality reduction with PCA to Original Matrix:\", '\\n', X_pca)\n```\n\n### License\n[MIT](https://mit-license.org/)\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Package with the PCA, SVD and t-SNE methods for dimensionality reduction",
"version": "0.1.0",
"split_keywords": [
"svd",
"pca",
"t-sne"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "3861c3967e570f172141101f1c477e98aa883572cc35dfda45dcbe5d39b7927a",
"md5": "423e1327870416b977b94a2bf83cb03e",
"sha256": "fe06c87838f6ed7011bbabda7ad0311ed55d29d3a6d8b4fd831f82315c479f30"
},
"downloads": -1,
"filename": "dimensionality_reductions_jmsv-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "423e1327870416b977b94a2bf83cb03e",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10,<4.0",
"size": 4667,
"upload_time": "2023-04-14T16:29:46",
"upload_time_iso_8601": "2023-04-14T16:29:46.679022Z",
"url": "https://files.pythonhosted.org/packages/38/61/c3967e570f172141101f1c477e98aa883572cc35dfda45dcbe5d39b7927a/dimensionality_reductions_jmsv-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1f2e7636ae34c0d3e5d16b913d783910c8d9dc607fb0c195d600cb58792945b3",
"md5": "ba5615d1f1a4fc9445e5686a56b4ca42",
"sha256": "b196cb585a6af1b2bb44cbed4b62c76de0832b4cf1fd228c0a4e419841acdc4c"
},
"downloads": -1,
"filename": "dimensionality_reductions_jmsv-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "ba5615d1f1a4fc9445e5686a56b4ca42",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10,<4.0",
"size": 2955,
"upload_time": "2023-04-14T16:29:47",
"upload_time_iso_8601": "2023-04-14T16:29:47.902352Z",
"url": "https://files.pythonhosted.org/packages/1f/2e/7636ae34c0d3e5d16b913d783910c8d9dc607fb0c195d600cb58792945b3/dimensionality_reductions_jmsv-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-04-14 16:29:47",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "dimensionality-reductions-jmsv"
}