Name | diresa JSON |
Version |
1.0.16
JSON |
| download |
home_page | None |
Summary | Diresa - distance-regularized siamese twin autoencoder |
upload_time | 2024-12-16 10:27:37 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.8 |
license | None |
keywords |
climate
learning
machine
tensorflow
weather
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# *DIRESA*
![test](https://gitlab.com/etrovub/ai4wcm/public/diresa/badges/master/pipeline.svg?ignore_skipped=true&key_text=test&key_width=35)
![release](https://gitlab.com/etrovub/ai4wcm/public/diresa/-/badges/release.svg?key_text=pypi&key_width=35)
![python](https://img.shields.io/badge/python-3.8%20|%203.9%20|%203.10%20|%203.11%20|%203.12-blue)
![tensorflow](https://img.shields.io/badge/tensorflow-2.12%20|%202.13%20|%202.14%20|%202.15%20|%202.16%20|%202.17%20|%202.18-orange)
![mit](https://img.shields.io/badge/license-MIT-yellow)
### Overview
*DIRESA* is a Python package for dimension reduction based on
[TensorFlow](https://www.tensorflow.org). The distance-regularized
Siamese twin autoencoder architecture is designed to preserve distance
(ordering) in latent space while capturing the non-linearities in
the datasets.
### Install *DIRESA*
Install *DIRESA* with the following command:
``` bash
pip install diresa
```
### Documentation
The *DIRESA* documentation can be found on [Read the Docs](https://diresa-learn.readthedocs.io)
Raw data
{
"_id": null,
"home_page": null,
"name": "diresa",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "climate, learning, machine, tensorflow, weather",
"author": null,
"author_email": "Geert De Paepe <geert.de.paepe@vub.be>",
"download_url": "https://files.pythonhosted.org/packages/04/ac/80115297a66ab59815892850851805fe8be409406f8304fbf90df9d4413b/diresa-1.0.16.tar.gz",
"platform": null,
"description": "# *DIRESA*\n\n![test](https://gitlab.com/etrovub/ai4wcm/public/diresa/badges/master/pipeline.svg?ignore_skipped=true&key_text=test&key_width=35)\n![release](https://gitlab.com/etrovub/ai4wcm/public/diresa/-/badges/release.svg?key_text=pypi&key_width=35)\n![python](https://img.shields.io/badge/python-3.8%20|%203.9%20|%203.10%20|%203.11%20|%203.12-blue)\n![tensorflow](https://img.shields.io/badge/tensorflow-2.12%20|%202.13%20|%202.14%20|%202.15%20|%202.16%20|%202.17%20|%202.18-orange)\n![mit](https://img.shields.io/badge/license-MIT-yellow)\n\n### Overview\n\n*DIRESA* is a Python package for dimension reduction based on \n[TensorFlow](https://www.tensorflow.org). The distance-regularized \nSiamese twin autoencoder architecture is designed to preserve distance \n(ordering) in latent space while capturing the non-linearities in\nthe datasets.\n\n\n### Install *DIRESA*\n\nInstall *DIRESA* with the following command:\n\n``` bash\n pip install diresa\n```\n\n### Documentation\n\nThe *DIRESA* documentation can be found on [Read the Docs](https://diresa-learn.readthedocs.io)",
"bugtrack_url": null,
"license": null,
"summary": "Diresa - distance-regularized siamese twin autoencoder",
"version": "1.0.16",
"project_urls": {
"Homepage": "https://gitlab.com/etrovub/ai4wcm/public/diresa",
"Issues": "https://gitlab.com/etrovub/ai4wcm/public/diresa/-/issues"
},
"split_keywords": [
"climate",
" learning",
" machine",
" tensorflow",
" weather"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7983c2c80587b50cc2dfb3edeea4812e8981f1d1c0bd1be49a210dd180850653",
"md5": "874e1cfa94ef0358099e4fb33c7ccc61",
"sha256": "a601b51d7c99af76884b95b869d0cb13af735ceb236cc90924b2969c27701f19"
},
"downloads": -1,
"filename": "diresa-1.0.16-py3-none-any.whl",
"has_sig": false,
"md5_digest": "874e1cfa94ef0358099e4fb33c7ccc61",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 11413,
"upload_time": "2024-12-16T10:27:34",
"upload_time_iso_8601": "2024-12-16T10:27:34.122488Z",
"url": "https://files.pythonhosted.org/packages/79/83/c2c80587b50cc2dfb3edeea4812e8981f1d1c0bd1be49a210dd180850653/diresa-1.0.16-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "04ac80115297a66ab59815892850851805fe8be409406f8304fbf90df9d4413b",
"md5": "5962a9ad1492f364d7b025683d3426a2",
"sha256": "0a290d7ffa9ef0b9bf971161a081b224a0ae948128b1f7aa3dba100ad7192fde"
},
"downloads": -1,
"filename": "diresa-1.0.16.tar.gz",
"has_sig": false,
"md5_digest": "5962a9ad1492f364d7b025683d3426a2",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 1618241,
"upload_time": "2024-12-16T10:27:37",
"upload_time_iso_8601": "2024-12-16T10:27:37.165488Z",
"url": "https://files.pythonhosted.org/packages/04/ac/80115297a66ab59815892850851805fe8be409406f8304fbf90df9d4413b/diresa-1.0.16.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-16 10:27:37",
"github": false,
"gitlab": true,
"bitbucket": false,
"codeberg": false,
"gitlab_user": "etrovub",
"gitlab_project": "ai4wcm",
"lcname": "diresa"
}