diresa


Namediresa JSON
Version 1.0.11 PyPI version JSON
download
home_pageNone
SummaryDiresa - distance-regularized siamese twin autoencoder
upload_time2024-11-06 09:00:05
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseNone
keywords climate learning machine tensorflow weather
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # *DIRESA*


### Overview

*DIRESA* is a Python package for dimension reduction based on 
[TensorFlow](https://www.tensorflow.org). The distance-regularized 
Siamese twin autoencoder architecture is designed to preserve distance 
(ordering) in latent space while capturing the non-linearities in
the datasets.


### Prerequisites

The *DIRESA* package depends on the [tensorflow](https://www.tensorflow.org) 
and [tensorflow_probability](https://www.tensorflow.org/probability) packages. 
These can be installed with the following commands:

``` bash
  pip install tensorflow
  pip install tensorflow_probability
```

### Install *DIRESA*

Install *DIRESA* with the following command:

``` bash
  pip install diresa
```

### Documentation

The *DIRESA* documentation can be found on [Read the Docs](https://diresa-learn.readthedocs.io)
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "diresa",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "climate, learning, machine, tensorflow, weather",
    "author": null,
    "author_email": "Geert De Paepe <geert.de.paepe@vub.be>",
    "download_url": "https://files.pythonhosted.org/packages/fa/90/285b321568f777358100aa506b2530f4cca595d888d9da1d3f32c21b8024/diresa-1.0.11.tar.gz",
    "platform": null,
    "description": "# *DIRESA*\n\n\n### Overview\n\n*DIRESA* is a Python package for dimension reduction based on \n[TensorFlow](https://www.tensorflow.org). The distance-regularized \nSiamese twin autoencoder architecture is designed to preserve distance \n(ordering) in latent space while capturing the non-linearities in\nthe datasets.\n\n\n### Prerequisites\n\nThe *DIRESA* package depends on the [tensorflow](https://www.tensorflow.org) \nand [tensorflow_probability](https://www.tensorflow.org/probability) packages. \nThese can be installed with the following commands:\n\n``` bash\n  pip install tensorflow\n  pip install tensorflow_probability\n```\n\n### Install *DIRESA*\n\nInstall *DIRESA* with the following command:\n\n``` bash\n  pip install diresa\n```\n\n### Documentation\n\nThe *DIRESA* documentation can be found on [Read the Docs](https://diresa-learn.readthedocs.io)",
    "bugtrack_url": null,
    "license": null,
    "summary": "Diresa - distance-regularized siamese twin autoencoder",
    "version": "1.0.11",
    "project_urls": {
        "Homepage": "https://gitlab.com/etrovub/ai4wcm/public/diresa",
        "Issues": "https://gitlab.com/etrovub/ai4wcm/public/diresa/-/issues"
    },
    "split_keywords": [
        "climate",
        " learning",
        " machine",
        " tensorflow",
        " weather"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "927598560e844c895f7ac25ba750296c2b7737ca7d2946f016b22a32789fc357",
                "md5": "fd7a1c18643cef69fa921b09018bdc7b",
                "sha256": "6d1de301c6d16f89a1c6ea7d93606e966860733b07977621fb88eac738043ed7"
            },
            "downloads": -1,
            "filename": "diresa-1.0.11-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "fd7a1c18643cef69fa921b09018bdc7b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 11686,
            "upload_time": "2024-11-06T09:00:03",
            "upload_time_iso_8601": "2024-11-06T09:00:03.062508Z",
            "url": "https://files.pythonhosted.org/packages/92/75/98560e844c895f7ac25ba750296c2b7737ca7d2946f016b22a32789fc357/diresa-1.0.11-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fa90285b321568f777358100aa506b2530f4cca595d888d9da1d3f32c21b8024",
                "md5": "aec73f1d3ce81bdc4cf7be1e586dbb69",
                "sha256": "50f7bb4cb90c906d9d955c40bd79fa212d961a16b1f83c68048906bfc0ab2cb5"
            },
            "downloads": -1,
            "filename": "diresa-1.0.11.tar.gz",
            "has_sig": false,
            "md5_digest": "aec73f1d3ce81bdc4cf7be1e586dbb69",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 1817370,
            "upload_time": "2024-11-06T09:00:05",
            "upload_time_iso_8601": "2024-11-06T09:00:05.689278Z",
            "url": "https://files.pythonhosted.org/packages/fa/90/285b321568f777358100aa506b2530f4cca595d888d9da1d3f32c21b8024/diresa-1.0.11.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-06 09:00:05",
    "github": false,
    "gitlab": true,
    "bitbucket": false,
    "codeberg": false,
    "gitlab_user": "etrovub",
    "gitlab_project": "ai4wcm",
    "lcname": "diresa"
}
        
Elapsed time: 0.42137s