Name | diresa JSON |
Version |
1.1.0
JSON |
| download |
home_page | None |
Summary | Diresa - distance-regularized siamese twin autoencoder |
upload_time | 2025-01-02 13:03:02 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.8 |
license | None |
keywords |
climate
learning
machine
tensorflow
weather
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# *DIRESA*
![test](https://gitlab.com/etrovub/ai4wcm/public/diresa/badges/master/pipeline.svg?ignore_skipped=true&key_text=test&key_width=35)
![release](https://gitlab.com/etrovub/ai4wcm/public/diresa/-/badges/release.svg?key_text=pypi&key_width=35)
![python](https://img.shields.io/badge/python-3.8%20|%203.9%20|%203.10%20|%203.11%20|%203.12-blue)
![tensorflow](https://img.shields.io/badge/tensorflow-2.12%20|%202.13%20|%202.14%20|%202.15%20|%202.16%20|%202.17%20|%202.18-orange)
![mit](https://img.shields.io/badge/license-MIT-yellow)
### Overview
*DIRESA* is a Python package for dimension reduction based on
[TensorFlow](https://www.tensorflow.org). The distance-regularized
Siamese twin autoencoder architecture is designed to preserve distance
(ordering) in latent space while capturing the non-linearities in
the datasets.
### Install *DIRESA*
Install *DIRESA* with the following command:
``` bash
pip install diresa
```
### Documentation
The *DIRESA* documentation can be found on [Read the Docs](https://diresa-learn.readthedocs.io)
Raw data
{
"_id": null,
"home_page": null,
"name": "diresa",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "climate, learning, machine, tensorflow, weather",
"author": null,
"author_email": "Geert De Paepe <geert.de.paepe@vub.be>",
"download_url": "https://files.pythonhosted.org/packages/22/9c/99410ba90371fca3a933c3c4d7b09eda05b1b2494796bbb85257406ae402/diresa-1.1.0.tar.gz",
"platform": null,
"description": "# *DIRESA*\n\n![test](https://gitlab.com/etrovub/ai4wcm/public/diresa/badges/master/pipeline.svg?ignore_skipped=true&key_text=test&key_width=35)\n![release](https://gitlab.com/etrovub/ai4wcm/public/diresa/-/badges/release.svg?key_text=pypi&key_width=35)\n![python](https://img.shields.io/badge/python-3.8%20|%203.9%20|%203.10%20|%203.11%20|%203.12-blue)\n![tensorflow](https://img.shields.io/badge/tensorflow-2.12%20|%202.13%20|%202.14%20|%202.15%20|%202.16%20|%202.17%20|%202.18-orange)\n![mit](https://img.shields.io/badge/license-MIT-yellow)\n\n### Overview\n\n*DIRESA* is a Python package for dimension reduction based on \n[TensorFlow](https://www.tensorflow.org). The distance-regularized \nSiamese twin autoencoder architecture is designed to preserve distance \n(ordering) in latent space while capturing the non-linearities in\nthe datasets.\n\n\n### Install *DIRESA*\n\nInstall *DIRESA* with the following command:\n\n``` bash\n pip install diresa\n```\n\n### Documentation\n\nThe *DIRESA* documentation can be found on [Read the Docs](https://diresa-learn.readthedocs.io)",
"bugtrack_url": null,
"license": null,
"summary": "Diresa - distance-regularized siamese twin autoencoder",
"version": "1.1.0",
"project_urls": {
"Homepage": "https://gitlab.com/etrovub/ai4wcm/public/diresa",
"Issues": "https://gitlab.com/etrovub/ai4wcm/public/diresa/-/issues"
},
"split_keywords": [
"climate",
" learning",
" machine",
" tensorflow",
" weather"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "1525e4f205e644368cd680754829e53a494616593a4b9b026f04f2648d297581",
"md5": "e5934e2dee361162c8f9d4738bb2aa67",
"sha256": "7a53ece184a3517619510350fdd287364f4807de8fdba1fb5f56557f72f44a92"
},
"downloads": -1,
"filename": "diresa-1.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "e5934e2dee361162c8f9d4738bb2aa67",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 12176,
"upload_time": "2025-01-02T13:03:00",
"upload_time_iso_8601": "2025-01-02T13:03:00.716865Z",
"url": "https://files.pythonhosted.org/packages/15/25/e4f205e644368cd680754829e53a494616593a4b9b026f04f2648d297581/diresa-1.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "229c99410ba90371fca3a933c3c4d7b09eda05b1b2494796bbb85257406ae402",
"md5": "cf37135d24bb4be3afc6a8341647e683",
"sha256": "fab719402524730887c6645792cc4ab7d0b150152e9ed7a4bfc54920466562ee"
},
"downloads": -1,
"filename": "diresa-1.1.0.tar.gz",
"has_sig": false,
"md5_digest": "cf37135d24bb4be3afc6a8341647e683",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 1616421,
"upload_time": "2025-01-02T13:03:02",
"upload_time_iso_8601": "2025-01-02T13:03:02.770906Z",
"url": "https://files.pythonhosted.org/packages/22/9c/99410ba90371fca3a933c3c4d7b09eda05b1b2494796bbb85257406ae402/diresa-1.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-02 13:03:02",
"github": false,
"gitlab": true,
"bitbucket": false,
"codeberg": false,
"gitlab_user": "etrovub",
"gitlab_project": "ai4wcm",
"lcname": "diresa"
}