# *DIRESA-Torch*
### Overview
*DIRESA-Torch* is a Python package for dimension reduction based on
[PyTorch](https://pytorch.org). The distance-regularized
Siamese twin autoencoder architecture is designed to preserve distance
(ordering) in latent space while capturing the non-linearities in
the datasets.
### Install *DIRESA-Torch*
Install *DIRESA-Torch* with the following command:
``` bash
pip install diresa-torch
```
### Documentation
The *DIRESA* documentation can be found on [Read the Docs](https://diresa-torch.readthedocs.io)
Raw data
{
"_id": null,
"home_page": null,
"name": "diresa-torch",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "climate, learning, machine, pytorch, weather",
"author": null,
"author_email": "Lars Bonnefoy <lars.bonnefoy@vub.be>, Geert De Paepe <geert.de.paepe@vub.be>",
"download_url": "https://files.pythonhosted.org/packages/04/4f/741fc3fd1add178f8ac733276bb745c850251f311ffcb0cdbf48553bb67e/diresa_torch-1.1.0.tar.gz",
"platform": null,
"description": "# *DIRESA-Torch*\n\n\n### Overview\n\n*DIRESA-Torch* is a Python package for dimension reduction based on \n[PyTorch](https://pytorch.org). The distance-regularized \nSiamese twin autoencoder architecture is designed to preserve distance \n(ordering) in latent space while capturing the non-linearities in\nthe datasets.\n\n\n### Install *DIRESA-Torch*\n\nInstall *DIRESA-Torch* with the following command:\n\n``` bash\n pip install diresa-torch\n```\n\n### Documentation\n\nThe *DIRESA* documentation can be found on [Read the Docs](https://diresa-torch.readthedocs.io)",
"bugtrack_url": null,
"license": null,
"summary": "Diresa - distance-regularized siamese twin autoencoder",
"version": "1.1.0",
"project_urls": {
"Homepage": "https://gitlab.com/etrovub/ai4wcm/public/diresa-torch",
"Issues": "https://gitlab.com/etrovub/ai4wcm/public/diresa-torch/-/issues"
},
"split_keywords": [
"climate",
" learning",
" machine",
" pytorch",
" weather"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "cfd7db2e17e008173a28a164d5eb07a0cda58e2e2ed0aa71af87d17576ae5580",
"md5": "c0fa0b645b8b795d29bd6c2fb74f740e",
"sha256": "f81726588f06f925bf4690adf3bd49f8eda1f0ab86a0dff5335b7d3f7cddcf70"
},
"downloads": -1,
"filename": "diresa_torch-1.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c0fa0b645b8b795d29bd6c2fb74f740e",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 29579,
"upload_time": "2025-10-12T18:52:53",
"upload_time_iso_8601": "2025-10-12T18:52:53.468510Z",
"url": "https://files.pythonhosted.org/packages/cf/d7/db2e17e008173a28a164d5eb07a0cda58e2e2ed0aa71af87d17576ae5580/diresa_torch-1.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "044f741fc3fd1add178f8ac733276bb745c850251f311ffcb0cdbf48553bb67e",
"md5": "87eb0f8d118e4855bdab2eff50380b18",
"sha256": "e79614c4f2e236cbabaab8371590dd523985a7a763e7e52c66eeea2fe4e8d516"
},
"downloads": -1,
"filename": "diresa_torch-1.1.0.tar.gz",
"has_sig": false,
"md5_digest": "87eb0f8d118e4855bdab2eff50380b18",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 22216,
"upload_time": "2025-10-12T18:52:54",
"upload_time_iso_8601": "2025-10-12T18:52:54.362536Z",
"url": "https://files.pythonhosted.org/packages/04/4f/741fc3fd1add178f8ac733276bb745c850251f311ffcb0cdbf48553bb67e/diresa_torch-1.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-12 18:52:54",
"github": false,
"gitlab": true,
"bitbucket": false,
"codeberg": false,
"gitlab_user": "etrovub",
"gitlab_project": "ai4wcm",
"lcname": "diresa-torch"
}