diverge-flow


Namediverge-flow JSON
Version 0.8.2 PyPI version JSON
download
home_pageNone
SummarydivERGe implements various ERG examples
upload_time2024-10-31 18:58:01
maintainerNone
docs_urlNone
authorJonas B. Profe, Lennart Klebl
requires_pythonNone
licenseGPLv3
keywords frg hpc
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # DivERGe implements various ERG examples
DivERGe provides a versatile framework to set up (one,) two and three
dimensional functional renormalization group (FRG/ERG) calculations under the
static vertex approximation.

It implements three backends, the grid FRG, truncated unity FRG (TUFRG) and
orbital space n-patch FRG.

For maximum performance, the code is written in C/C++ with extensions in CUDA
(GPUs). It makes minimal use of other dependencies, only FFTW and LAPACK are
required. MPI may be used if desired. DivERGe can be interfaced from C/C++ or
python, with an existing python FFI wrapper. This wrapper is published in pypi,
such that you can run
```
pip install diverge-flow
```
on a 64bit linux machine and directly use divERGe. For different architectures,
compilation is additionally required (and putting the correct
```libdivERGe.so``` in your ```LD_LIBRARY_PATH```). You can verify the .so file
in use by calling ```diverge.info()``` from python. For any other language, you
must write all the FFI wrappers yourself.

# [Documentation](https://frg.pages.rwth-aachen.de/diverge/)
[https://frg.pages.rwth-aachen.de/diverge/](https://frg.pages.rwth-aachen.de/diverge/)

# [Download CPU release](https://git.rwth-aachen.de/frg/diverge/-/raw/master/public/releases/v0.8/divERGe.tar.gz)
Generic linux (amd64) builds (GLIBC>=2.17, this should be given almost anywhere
to date) can be downloaded
[here](https://git.rwth-aachen.de/frg/diverge/-/tree/master/public/releases). We
recommend building from source for an optimized version on the HPC
infrastructure to your availability.

# Testing
We use a slightly modified version of
[Catch2](https://github.com/catchorg/Catch2) for testing. To check divERGe's
health from python, run
```
import diverge
diverge.init(None, None)
diverge.run_tests()
diverge.finalize()
```

# Citation
Please cite [this paper](https://doi.org/10.21468/SciPostPhysCodeb.26) when
using divERGe for your work. You may use the following BibTex entry:
```
@Article{10.21468/SciPostPhysCodeb.26,
	title={{divERGe implements various Exact Renormalization Group examples}},
	author={Jonas B. Profe and Dante M. Kennes and Lennart Klebl},
	journal={SciPost Phys. Codebases},
	pages={26},
	year={2024},
	publisher={SciPost},
	doi={10.21468/SciPostPhysCodeb.26},
	url={https://scipost.org/10.21468/SciPostPhysCodeb.26},
}
```

# License
divERGe is published under the
[GPLv3](https://www.gnu.org/licenses/gpl-3.0.html). The releases include
differently licensed software ([OpenBLAS](https://www.openblas.net/),
[FFTW](https://www.fftw.org/)) in binary form.
<!-- non-free parts ([CUDA](https://developer.nvidia.com/cuda-toolkit)) and -->

# Authors
**Jonas B. Profe** and **Lennart Klebl**, 2024.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "diverge-flow",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "frg, hpc",
    "author": "Jonas B. Profe, Lennart Klebl",
    "author_email": "jonas.hauck@rwth-aachen.de, lennart.klebl@rwth-aachen.de",
    "download_url": "https://files.pythonhosted.org/packages/db/5d/7b4f9e8d22205089ad7340c1b42127784a4d1cc29ea376fa3beca1298e98/diverge_flow-0.8.2.tar.gz",
    "platform": null,
    "description": "# DivERGe implements various ERG examples\nDivERGe provides a versatile framework to set up (one,) two and three\ndimensional functional renormalization group (FRG/ERG) calculations under the\nstatic vertex approximation.\n\nIt implements three backends, the grid FRG, truncated unity FRG (TUFRG) and\norbital space n-patch FRG.\n\nFor maximum performance, the code is written in C/C++ with extensions in CUDA\n(GPUs). It makes minimal use of other dependencies, only FFTW and LAPACK are\nrequired. MPI may be used if desired. DivERGe can be interfaced from C/C++ or\npython, with an existing python FFI wrapper. This wrapper is published in pypi,\nsuch that you can run\n```\npip install diverge-flow\n```\non a 64bit linux machine and directly use divERGe. For different architectures,\ncompilation is additionally required (and putting the correct\n```libdivERGe.so``` in your ```LD_LIBRARY_PATH```). You can verify the .so file\nin use by calling ```diverge.info()``` from python. For any other language, you\nmust write all the FFI wrappers yourself.\n\n# [Documentation](https://frg.pages.rwth-aachen.de/diverge/)\n[https://frg.pages.rwth-aachen.de/diverge/](https://frg.pages.rwth-aachen.de/diverge/)\n\n# [Download CPU release](https://git.rwth-aachen.de/frg/diverge/-/raw/master/public/releases/v0.8/divERGe.tar.gz)\nGeneric linux (amd64) builds (GLIBC>=2.17, this should be given almost anywhere\nto date) can be downloaded\n[here](https://git.rwth-aachen.de/frg/diverge/-/tree/master/public/releases). We\nrecommend building from source for an optimized version on the HPC\ninfrastructure to your availability.\n\n# Testing\nWe use a slightly modified version of\n[Catch2](https://github.com/catchorg/Catch2) for testing. To check divERGe's\nhealth from python, run\n```\nimport diverge\ndiverge.init(None, None)\ndiverge.run_tests()\ndiverge.finalize()\n```\n\n# Citation\nPlease cite [this paper](https://doi.org/10.21468/SciPostPhysCodeb.26) when\nusing divERGe for your work. You may use the following BibTex entry:\n```\n@Article{10.21468/SciPostPhysCodeb.26,\n\ttitle={{divERGe implements various Exact Renormalization Group examples}},\n\tauthor={Jonas B. Profe and Dante M. Kennes and Lennart Klebl},\n\tjournal={SciPost Phys. Codebases},\n\tpages={26},\n\tyear={2024},\n\tpublisher={SciPost},\n\tdoi={10.21468/SciPostPhysCodeb.26},\n\turl={https://scipost.org/10.21468/SciPostPhysCodeb.26},\n}\n```\n\n# License\ndivERGe is published under the\n[GPLv3](https://www.gnu.org/licenses/gpl-3.0.html). The releases include\ndifferently licensed software ([OpenBLAS](https://www.openblas.net/),\n[FFTW](https://www.fftw.org/)) in binary form.\n<!-- non-free parts ([CUDA](https://developer.nvidia.com/cuda-toolkit)) and -->\n\n# Authors\n**Jonas B. Profe** and **Lennart Klebl**, 2024.\n",
    "bugtrack_url": null,
    "license": "GPLv3",
    "summary": "divERGe implements various ERG examples",
    "version": "0.8.2",
    "project_urls": null,
    "split_keywords": [
        "frg",
        " hpc"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "35ee6094d06c4acbdfb6d2c367c67f63a1ecd2bcec530b78808feaf4b5267341",
                "md5": "679769fa47d2051b67a5936aa46d5883",
                "sha256": "5090f7ff5e6752cb8e4fb0136d2e92af8e733a40912347830b1c5ebad51d556f"
            },
            "downloads": -1,
            "filename": "diverge_flow-0.8.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "679769fa47d2051b67a5936aa46d5883",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 2602476,
            "upload_time": "2024-10-31T18:57:56",
            "upload_time_iso_8601": "2024-10-31T18:57:56.555811Z",
            "url": "https://files.pythonhosted.org/packages/35/ee/6094d06c4acbdfb6d2c367c67f63a1ecd2bcec530b78808feaf4b5267341/diverge_flow-0.8.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "db5d7b4f9e8d22205089ad7340c1b42127784a4d1cc29ea376fa3beca1298e98",
                "md5": "32fbeff9e7ba4a8033591388c9f976c8",
                "sha256": "76658592b793c7aff24746062a4bff882c478bac9446d11a3dd7f05b2393fe78"
            },
            "downloads": -1,
            "filename": "diverge_flow-0.8.2.tar.gz",
            "has_sig": false,
            "md5_digest": "32fbeff9e7ba4a8033591388c9f976c8",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 2587782,
            "upload_time": "2024-10-31T18:58:01",
            "upload_time_iso_8601": "2024-10-31T18:58:01.958393Z",
            "url": "https://files.pythonhosted.org/packages/db/5d/7b4f9e8d22205089ad7340c1b42127784a4d1cc29ea376fa3beca1298e98/diverge_flow-0.8.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-31 18:58:01",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "diverge-flow"
}
        
Elapsed time: 0.38276s