dividebyzero


Namedividebyzero JSON
Version 0.1.2 PyPI version JSON
download
home_pageNone
SummaryA NumPy extension implementing division by zero as dimensional reduction
upload_time2024-12-29 09:03:30
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseNone
keywords mathematics numpy quantum tensor
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # DivideByZero: Dimensional Reduction Through Mathematical Singularities

## Foundational Framework for Computational Singularity Analysis

DivideByZero (`dividebyzero`) implements a novel mathematical framework that reconceptualizes division by zero as dimensional reduction operations. This paradigm shift transforms traditionally undefined mathematical operations into well-defined dimensional transformations, enabling new approaches to numerical analysis and quantum computation.

## Core Mathematical Principles

### Dimensional Division Operator
The framework defines division by zero through the dimensional reduction operator $\oslash$:

For tensor $T \in \mathcal{D}_n$:
```
T ∅ 0 = π(T) + ε(T)
```
Where:
- $\pi(T)$: Projection to lower dimension
- $\epsilon(T)$: Quantized error preservation
- $\mathcal{D}_n$: n-dimensional tensor space

### Installation

```bash
pip install dividebyzero
```

## Fundamental Usage Patterns

### Basic Operations
```python
import dividebyzero as dbz

# Create dimensional array
x = dbz.array([[1, 2, 3],
               [4, 5, 6]])

# Divide by zero - reduces dimension
result = x / 0

# Reconstruct original dimensions
reconstructed = result.elevate()
```

### Key Features

#### 1. Transparent NumPy Integration
- Drop-in replacement for numpy operations
- Preserves standard numerical behavior
- Extends functionality to handle singularities

#### 2. Information Preservation
- Maintains core data characteristics through reduction
- Tracks quantum error information
- Enables dimensional reconstruction

#### 3. Advanced Mathematical Operations
```python
# Quantum tensor operations
from dividebyzero.quantum import QuantumTensor

# Create quantum-aware tensor
q_tensor = QuantumTensor(data, physical_dims=(2, 2, 2))

# Perform gauge-invariant reduction
reduced = q_tensor.reduce_dimension(
    target_dims=2,
    preserve_entanglement=True
)
```

## Theoretical Framework

### Mathematical Foundations

The framework builds on several key mathematical concepts:

1. **Dimensional Reduction**
   - Singular Value Decomposition (SVD)
   - Information-preserving projections
   - Error quantization mechanisms

2. **Quantum Extensions**
   - Tensor network operations
   - Gauge field computations
   - Holonomy calculations

3. **Error Tracking**
   - Holographic error encoding
   - Dimensional reconstruction algorithms
   - Quantum state preservation

## Advanced Applications

### 1. Quantum Computing
```python
# Quantum state manipulation
state = dbz.quantum.QuantumTensor([
    [1, 0],
    [0, 1]
])

# Preserve quantum information during reduction
reduced_state = state / 0
```

### 2. Numerical Analysis
```python
# Handle singularities in numerical computations
def stable_computation(x):
    return dbz.array(x) / 0  # Returns dimensional reduction instead of error
```

### 3. Data Processing
```python
# Dimensionality reduction with information preservation
reduced_data = dbz.array(high_dim_data) / 0
reconstructed = reduced_data.elevate()
```

## Technical Requirements

- Python ≥ 3.8
- NumPy ≥ 1.20.0
- SciPy ≥ 1.7.0

### Optional Dependencies
- networkx ≥ 2.6.0 (for quantum features)
- pytest ≥ 6.0 (for testing)

## Development and Extension

### Contributing
1. Fork the repository
2. Create feature branch
3. Implement changes with tests
4. Submit pull request

### Testing
```bash
pytest tests/
```

## Mathematical Documentation

Detailed mathematical foundations are available in the [Technical Documentation](docs/theory.md), including:

- Formal proofs of dimensional preservation
- Quantum mechanical extensions
- Gauge field implementations
- Error quantization theorems

## Citation

If you use this framework in your research, please cite:

```bibtex
@software{dividebyzero2024,
  title={DivideByZero: Dimensional Reduction Through Mathematical Singularities},
  author={Michael C. Jenkins},
  year={2024},
  url={https://github.com/jenkinsm13/dividebyzero}
}
```

## License

MIT License - see [LICENSE](LICENSE) for details.

---

**Note:** This framework reimagines fundamental mathematical operations. While it provides practical solutions for handling mathematical singularities, users should understand the underlying theoretical principles for appropriate application.
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "dividebyzero",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "mathematics, numpy, quantum, tensor",
    "author": null,
    "author_email": "Your Name <your.email@example.com>",
    "download_url": "https://files.pythonhosted.org/packages/33/d7/967e8db6a209b8c3cec5747d9ba076be9394ee39ccf23c233df687883a51/dividebyzero-0.1.2.tar.gz",
    "platform": null,
    "description": "# DivideByZero: Dimensional Reduction Through Mathematical Singularities\n\n## Foundational Framework for Computational Singularity Analysis\n\nDivideByZero (`dividebyzero`) implements a novel mathematical framework that reconceptualizes division by zero as dimensional reduction operations. This paradigm shift transforms traditionally undefined mathematical operations into well-defined dimensional transformations, enabling new approaches to numerical analysis and quantum computation.\n\n## Core Mathematical Principles\n\n### Dimensional Division Operator\nThe framework defines division by zero through the dimensional reduction operator $\\oslash$:\n\nFor tensor $T \\in \\mathcal{D}_n$:\n```\nT \u2205 0 = \u03c0(T) + \u03b5(T)\n```\nWhere:\n- $\\pi(T)$: Projection to lower dimension\n- $\\epsilon(T)$: Quantized error preservation\n- $\\mathcal{D}_n$: n-dimensional tensor space\n\n### Installation\n\n```bash\npip install dividebyzero\n```\n\n## Fundamental Usage Patterns\n\n### Basic Operations\n```python\nimport dividebyzero as dbz\n\n# Create dimensional array\nx = dbz.array([[1, 2, 3],\n               [4, 5, 6]])\n\n# Divide by zero - reduces dimension\nresult = x / 0\n\n# Reconstruct original dimensions\nreconstructed = result.elevate()\n```\n\n### Key Features\n\n#### 1. Transparent NumPy Integration\n- Drop-in replacement for numpy operations\n- Preserves standard numerical behavior\n- Extends functionality to handle singularities\n\n#### 2. Information Preservation\n- Maintains core data characteristics through reduction\n- Tracks quantum error information\n- Enables dimensional reconstruction\n\n#### 3. Advanced Mathematical Operations\n```python\n# Quantum tensor operations\nfrom dividebyzero.quantum import QuantumTensor\n\n# Create quantum-aware tensor\nq_tensor = QuantumTensor(data, physical_dims=(2, 2, 2))\n\n# Perform gauge-invariant reduction\nreduced = q_tensor.reduce_dimension(\n    target_dims=2,\n    preserve_entanglement=True\n)\n```\n\n## Theoretical Framework\n\n### Mathematical Foundations\n\nThe framework builds on several key mathematical concepts:\n\n1. **Dimensional Reduction**\n   - Singular Value Decomposition (SVD)\n   - Information-preserving projections\n   - Error quantization mechanisms\n\n2. **Quantum Extensions**\n   - Tensor network operations\n   - Gauge field computations\n   - Holonomy calculations\n\n3. **Error Tracking**\n   - Holographic error encoding\n   - Dimensional reconstruction algorithms\n   - Quantum state preservation\n\n## Advanced Applications\n\n### 1. Quantum Computing\n```python\n# Quantum state manipulation\nstate = dbz.quantum.QuantumTensor([\n    [1, 0],\n    [0, 1]\n])\n\n# Preserve quantum information during reduction\nreduced_state = state / 0\n```\n\n### 2. Numerical Analysis\n```python\n# Handle singularities in numerical computations\ndef stable_computation(x):\n    return dbz.array(x) / 0  # Returns dimensional reduction instead of error\n```\n\n### 3. Data Processing\n```python\n# Dimensionality reduction with information preservation\nreduced_data = dbz.array(high_dim_data) / 0\nreconstructed = reduced_data.elevate()\n```\n\n## Technical Requirements\n\n- Python \u2265 3.8\n- NumPy \u2265 1.20.0\n- SciPy \u2265 1.7.0\n\n### Optional Dependencies\n- networkx \u2265 2.6.0 (for quantum features)\n- pytest \u2265 6.0 (for testing)\n\n## Development and Extension\n\n### Contributing\n1. Fork the repository\n2. Create feature branch\n3. Implement changes with tests\n4. Submit pull request\n\n### Testing\n```bash\npytest tests/\n```\n\n## Mathematical Documentation\n\nDetailed mathematical foundations are available in the [Technical Documentation](docs/theory.md), including:\n\n- Formal proofs of dimensional preservation\n- Quantum mechanical extensions\n- Gauge field implementations\n- Error quantization theorems\n\n## Citation\n\nIf you use this framework in your research, please cite:\n\n```bibtex\n@software{dividebyzero2024,\n  title={DivideByZero: Dimensional Reduction Through Mathematical Singularities},\n  author={Michael C. Jenkins},\n  year={2024},\n  url={https://github.com/jenkinsm13/dividebyzero}\n}\n```\n\n## License\n\nMIT License - see [LICENSE](LICENSE) for details.\n\n---\n\n**Note:** This framework reimagines fundamental mathematical operations. While it provides practical solutions for handling mathematical singularities, users should understand the underlying theoretical principles for appropriate application.",
    "bugtrack_url": null,
    "license": null,
    "summary": "A NumPy extension implementing division by zero as dimensional reduction",
    "version": "0.1.2",
    "project_urls": null,
    "split_keywords": [
        "mathematics",
        " numpy",
        " quantum",
        " tensor"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "49a63e9850def67990ad2b520b91b91056262a52200798b68c6b782a00560b72",
                "md5": "2ed337abeb73bdc88d98bf989124b9f5",
                "sha256": "f89f12309fbea393fce19d4ae9645ed066802842a5202421a4468cae13651f1c"
            },
            "downloads": -1,
            "filename": "dividebyzero-0.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2ed337abeb73bdc88d98bf989124b9f5",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 28515,
            "upload_time": "2024-12-29T09:03:28",
            "upload_time_iso_8601": "2024-12-29T09:03:28.007017Z",
            "url": "https://files.pythonhosted.org/packages/49/a6/3e9850def67990ad2b520b91b91056262a52200798b68c6b782a00560b72/dividebyzero-0.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "33d7967e8db6a209b8c3cec5747d9ba076be9394ee39ccf23c233df687883a51",
                "md5": "a7641df12b81288d7442a3a56bdfcce0",
                "sha256": "c659389790ab751c3703490a7be97973887fd13e0c25dd9f086fdf91b29d6769"
            },
            "downloads": -1,
            "filename": "dividebyzero-0.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "a7641df12b81288d7442a3a56bdfcce0",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 38323,
            "upload_time": "2024-12-29T09:03:30",
            "upload_time_iso_8601": "2024-12-29T09:03:30.837111Z",
            "url": "https://files.pythonhosted.org/packages/33/d7/967e8db6a209b8c3cec5747d9ba076be9394ee39ccf23c233df687883a51/dividebyzero-0.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-29 09:03:30",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "dividebyzero"
}
        
Elapsed time: 3.98842s