dnn-tip


Namednn-tip JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/testingautomated-usi/dnn-tip
SummaryA collection of DNN test input prioritizers,in particular neuron coverage and surprise adequacy.
upload_time2023-02-03 09:31:23
maintainer
docs_urlNone
authorMichael Weiss
requires_python
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # DNN-TIP: Common Test Input Prioritizers Library 

[![test](https://github.com/testingautomated-usi/dnn-tip/actions/workflows/test.yml/badge.svg)](https://github.com/testingautomated-usi/dnn-tip/actions/workflows/test.yml)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
![docstr-coverage](https://img.shields.io/endpoint?url=https://jsonbin.org/MiWeiss/dnn-tip/badges/docstr-cov)
[![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/)
[![Python Version](https://img.shields.io/pypi/pyversions/dnn-tip)](https://img.shields.io/pypi/pyversions/dnn-tip)
[![PyPi Deployment](https://badgen.net/pypi/v/dnn-tip?cache=30)](https://pypi.org/project/dnn-tip/)
[![License](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/testingautomated-usi/dnn-tip/blob/develop/LICENSE)
[![DOI](https://zenodo.org/badge/478142616.svg)](https://zenodo.org/badge/latestdoi/478142616)


## Implemented Approaches
* __Surprise Adequacies__
    * Distance-based Surprise Adequacy (DSA)
    * Likelihood-based Surprise Adequacy (LSA)
    * MultiModal-Likelihood-based Surprise Adequacy (MLSA)
    * Mahalanobis-based Surprise Adequacy (MDSA)
    * _abstract_ MultiModal Surprise Adequacy
* __Surprise Coverage__
  * Neuron-Activation Coverage (NAC)
  * K-Multisection Neuron Coverage (KMNC)
  * Neuron Boundary Coverage (NBC)
  * Strong Neuron Activation Coverage (SNAC)
  * Top-k Neuron Coverage (TKNC)
* __Utilities__
    * APFD calculation
    * Coverage-Added and Coverage-Total Prioritization Methods (CAM and CTM)

If you are looking for the uncertainty metrics we also tested (including DeepGini),
head over to the sister repository [uncertainty-wizard](https://github.com/testingautomated-usi/uncertainty-wizard).

If you want to reproduce our exact experiments, there's a reproduction package and docker stuff available at [testingautomated-usi/simple-tip](https://github.com/testingautomated-usi/simple-tip).




## Installation
It's as easy as `pip install dnn-tip`.




## Documentation

Find the documentation at [https://testingautomated-usi.github.io/dnn-tip/](https://testingautomated-usi.github.io/dnn-tip/).


## Citation

Here's the reference to the paper as part of which this library was release:

```
@inproceedings{10.1145/3533767.3534375,
author = {Weiss, Michael and Tonella, Paolo},
title = {Simple Techniques Work Surprisingly Well for Neural Network Test Prioritization and Active Learning (Replicability Study)},
year = {2022},
isbn = {9781450393799},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3533767.3534375},
doi = {10.1145/3533767.3534375},
booktitle = {Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis},
pages = {139–150},
numpages = {12},
keywords = {neural networks, Test prioritization, uncertainty quantification},
location = {Virtual, South Korea},
series = {ISSTA 2022}
}



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/testingautomated-usi/dnn-tip",
    "name": "dnn-tip",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Michael Weiss",
    "author_email": "michael.weiss@usi.ch",
    "download_url": "https://files.pythonhosted.org/packages/d4/f3/714e5017632ca779fd548a89b54e181e8d2a5457270954b4b6a3398bbc08/dnn-tip-0.1.1.tar.gz",
    "platform": null,
    "description": "# DNN-TIP: Common Test Input Prioritizers Library \n\n[![test](https://github.com/testingautomated-usi/dnn-tip/actions/workflows/test.yml/badge.svg)](https://github.com/testingautomated-usi/dnn-tip/actions/workflows/test.yml)\n[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n![docstr-coverage](https://img.shields.io/endpoint?url=https://jsonbin.org/MiWeiss/dnn-tip/badges/docstr-cov)\n[![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/)\n[![Python Version](https://img.shields.io/pypi/pyversions/dnn-tip)](https://img.shields.io/pypi/pyversions/dnn-tip)\n[![PyPi Deployment](https://badgen.net/pypi/v/dnn-tip?cache=30)](https://pypi.org/project/dnn-tip/)\n[![License](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/testingautomated-usi/dnn-tip/blob/develop/LICENSE)\n[![DOI](https://zenodo.org/badge/478142616.svg)](https://zenodo.org/badge/latestdoi/478142616)\n\n\n## Implemented Approaches\n* __Surprise Adequacies__\n    * Distance-based Surprise Adequacy (DSA)\n    * Likelihood-based Surprise Adequacy (LSA)\n    * MultiModal-Likelihood-based Surprise Adequacy (MLSA)\n    * Mahalanobis-based Surprise Adequacy (MDSA)\n    * _abstract_ MultiModal Surprise Adequacy\n* __Surprise Coverage__\n  * Neuron-Activation Coverage (NAC)\n  * K-Multisection Neuron Coverage (KMNC)\n  * Neuron Boundary Coverage (NBC)\n  * Strong Neuron Activation Coverage (SNAC)\n  * Top-k Neuron Coverage (TKNC)\n* __Utilities__\n    * APFD calculation\n    * Coverage-Added and Coverage-Total Prioritization Methods (CAM and CTM)\n\nIf you are looking for the uncertainty metrics we also tested (including DeepGini),\nhead over to the sister repository [uncertainty-wizard](https://github.com/testingautomated-usi/uncertainty-wizard).\n\nIf you want to reproduce our exact experiments, there's a reproduction package and docker stuff available at [testingautomated-usi/simple-tip](https://github.com/testingautomated-usi/simple-tip).\n\n\n\n\n## Installation\nIt's as easy as `pip install dnn-tip`.\n\n\n\n\n## Documentation\n\nFind the documentation at [https://testingautomated-usi.github.io/dnn-tip/](https://testingautomated-usi.github.io/dnn-tip/).\n\n\n## Citation\n\nHere's the reference to the paper as part of which this library was release:\n\n```\n@inproceedings{10.1145/3533767.3534375,\nauthor = {Weiss, Michael and Tonella, Paolo},\ntitle = {Simple Techniques Work Surprisingly Well for Neural Network Test Prioritization and Active Learning (Replicability Study)},\nyear = {2022},\nisbn = {9781450393799},\npublisher = {Association for Computing Machinery},\naddress = {New York, NY, USA},\nurl = {https://doi.org/10.1145/3533767.3534375},\ndoi = {10.1145/3533767.3534375},\nbooktitle = {Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis},\npages = {139\u2013150},\nnumpages = {12},\nkeywords = {neural networks, Test prioritization, uncertainty quantification},\nlocation = {Virtual, South Korea},\nseries = {ISSTA 2022}\n}\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A collection of DNN test input prioritizers,in particular neuron coverage and surprise adequacy.",
    "version": "0.1.1",
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "af9e56e68c88b4059581179cdd0d56f2652dc381374ee754e9c9a2303698b668",
                "md5": "ebf97405bd2fc8ea205aeb1d5fbd9130",
                "sha256": "544763e798e6db1289296f673214bbb57e6878c0f9489041df10cc8771df917a"
            },
            "downloads": -1,
            "filename": "dnn_tip-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ebf97405bd2fc8ea205aeb1d5fbd9130",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 15621,
            "upload_time": "2023-02-03T09:31:21",
            "upload_time_iso_8601": "2023-02-03T09:31:21.212752Z",
            "url": "https://files.pythonhosted.org/packages/af/9e/56e68c88b4059581179cdd0d56f2652dc381374ee754e9c9a2303698b668/dnn_tip-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d4f3714e5017632ca779fd548a89b54e181e8d2a5457270954b4b6a3398bbc08",
                "md5": "84dfdc4fdbdbe88e243d93689d7f4398",
                "sha256": "c89eb227329b3b264b3eccbb1812ca12058245862a28948ff928edb683505281"
            },
            "downloads": -1,
            "filename": "dnn-tip-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "84dfdc4fdbdbe88e243d93689d7f4398",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 15494,
            "upload_time": "2023-02-03T09:31:23",
            "upload_time_iso_8601": "2023-02-03T09:31:23.002195Z",
            "url": "https://files.pythonhosted.org/packages/d4/f3/714e5017632ca779fd548a89b54e181e8d2a5457270954b4b6a3398bbc08/dnn-tip-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-02-03 09:31:23",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "testingautomated-usi",
    "github_project": "dnn-tip",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "dnn-tip"
}
        
Elapsed time: 0.04007s