doc-transformers


Namedoc-transformers JSON
Version 1.0.2 PyPI version JSON
download
home_pagehttps://github.com/Vishnunkumar/doc_transformers/
SummaryDeep learning for document processing
upload_time2023-04-22 15:09:53
maintainer
docs_urlNone
authorVishnu Nandakumar
requires_python
licenseMIT license
keywords doc_transformers
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Doc Transformers
Document processing using transformers. This is still in developmental phase, currently supports only extraction of form data i.e (key - value pairs)

```bash
pip install -q doc-transformers
```

## Pre-requisites

Please install the following seperately
```
pip install pip --upgrade
pip install -q git+https://github.com/huggingface/transformers.git

pip install pyyaml==5.1

# workaround: install old version of pytorch since detectron2 hasn't released packages for pytorch 1.9 (issue: https://github.com/facebookresearch/detectron2/issues/3158)
pip install torch==1.8.0+cu101 torchvision==0.9.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html

# install detectron2 that matches pytorch 1.8
# See https://detectron2.readthedocs.io/tutorials/install.html for instructions
pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html
```

## Implementation

```python
# loads the pretrained dataset also 
from doc_transformers import parser

# loads the image and labels
image = parser.load_image(input_path_image)
labels = parser.load_tags()

# loads the model
feature_extractor, processor, model = parser.load_models()

# gets the bounding boxes, predictions, extracted words and image processed
kp = parser.process_image(image, feature_extractor, processor, model, labels)
```

## Results

**Input & Output**

<p float="left">
<img src="/bill7.png" width="350" height="600">
<img src="/output.png" width="350" height="600">
</p>

**Table**

- After saving to csv the result looks like the following

| LABEL | TEXT                               |
| ----- | ---------------------------------- |
| title | CREDIT CARD VOUCHER ANY RESTAURANT |
| title | ANYWHERE                           |
| key   | DATE:                              |
| value | 02/02/2014                         |
| key   | TIME:                              |
| value | 11:11                              |
| key   | CARD                               |
| key   | TYPE:                              |
| value | MC                                 |
| key   | ACCT:                              |
| value | XXXX XXXX XXXX                     |
| value | 1111                               |
| key   | TRANS                              |
| key   | KEY:                               |
| value | HYU8789798234                      |
| key   | AUTH                               |
| key   | CODE:                              |
| value | 12345                              |
| key   | EXP                                |
| key   | DATE:                              |
| value | XX/XX                              |
| key   | CHECK:                             |
| value | 1111                               |
| key   | TABLE:                             |
| value | 11/11                              |
| key   | SERVER:                            |
| value | 34                                 |
| value | MONIKA                             |
| key   | Subtotal:                          |
| value | $1969                              |
| value | .69                                |
| key   | Gratuity: Total:                   |

## Code credits

[@HuggingFace](https://huggingface.co/)

- Please note that this is still in development phase and will be improved in the near future

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Vishnunkumar/doc_transformers/",
    "name": "doc-transformers",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "doc_transformers",
    "author": "Vishnu Nandakumar",
    "author_email": "nkumarvishnu25@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/49/1a/bf348e38a5690bd2670c4639a996c2919542aa6b4ecc98d17ca8875b5b08/doc_transformers-1.0.2.tar.gz",
    "platform": null,
    "description": "# Doc Transformers\nDocument processing using transformers. This is still in developmental phase, currently supports only extraction of form data i.e (key - value pairs)\n\n```bash\npip install -q doc-transformers\n```\n\n## Pre-requisites\n\nPlease install the following seperately\n```\npip install pip --upgrade\npip install -q git+https://github.com/huggingface/transformers.git\n\npip install pyyaml==5.1\n\n# workaround: install old version of pytorch since detectron2 hasn't released packages for pytorch 1.9 (issue: https://github.com/facebookresearch/detectron2/issues/3158)\npip install torch==1.8.0+cu101 torchvision==0.9.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html\n\n# install detectron2 that matches pytorch 1.8\n# See https://detectron2.readthedocs.io/tutorials/install.html for instructions\npip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html\n```\n\n## Implementation\n\n```python\n# loads the pretrained dataset also \nfrom doc_transformers import parser\n\n# loads the image and labels\nimage = parser.load_image(input_path_image)\nlabels = parser.load_tags()\n\n# loads the model\nfeature_extractor, processor, model = parser.load_models()\n\n# gets the bounding boxes, predictions, extracted words and image processed\nkp = parser.process_image(image, feature_extractor, processor, model, labels)\n```\n\n## Results\n\n**Input & Output**\n\n<p float=\"left\">\n<img src=\"/bill7.png\" width=\"350\" height=\"600\">\n<img src=\"/output.png\" width=\"350\" height=\"600\">\n</p>\n\n**Table**\n\n- After saving to csv the result looks like the following\n\n| LABEL | TEXT                               |\n| ----- | ---------------------------------- |\n| title | CREDIT CARD VOUCHER ANY RESTAURANT |\n| title | ANYWHERE                           |\n| key   | DATE:                              |\n| value | 02/02/2014                         |\n| key   | TIME:                              |\n| value | 11:11                              |\n| key   | CARD                               |\n| key   | TYPE:                              |\n| value | MC                                 |\n| key   | ACCT:                              |\n| value | XXXX XXXX XXXX                     |\n| value | 1111                               |\n| key   | TRANS                              |\n| key   | KEY:                               |\n| value | HYU8789798234                      |\n| key   | AUTH                               |\n| key   | CODE:                              |\n| value | 12345                              |\n| key   | EXP                                |\n| key   | DATE:                              |\n| value | XX/XX                              |\n| key   | CHECK:                             |\n| value | 1111                               |\n| key   | TABLE:                             |\n| value | 11/11                              |\n| key   | SERVER:                            |\n| value | 34                                 |\n| value | MONIKA                             |\n| key   | Subtotal:                          |\n| value | $1969                              |\n| value | .69                                |\n| key   | Gratuity: Total:                   |\n\n## Code credits\n\n[@HuggingFace](https://huggingface.co/)\n\n- Please note that this is still in development phase and will be improved in the near future\n",
    "bugtrack_url": null,
    "license": "MIT license",
    "summary": "Deep learning for document processing",
    "version": "1.0.2",
    "split_keywords": [
        "doc_transformers"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "491abf348e38a5690bd2670c4639a996c2919542aa6b4ecc98d17ca8875b5b08",
                "md5": "57256940754696e97fc6e49e5e3dd0e1",
                "sha256": "17ee79d4484bb319e79371c83cf8a1e266d16bd983806db37aade0a1bba9db9c"
            },
            "downloads": -1,
            "filename": "doc_transformers-1.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "57256940754696e97fc6e49e5e3dd0e1",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 4673,
            "upload_time": "2023-04-22T15:09:53",
            "upload_time_iso_8601": "2023-04-22T15:09:53.544653Z",
            "url": "https://files.pythonhosted.org/packages/49/1a/bf348e38a5690bd2670c4639a996c2919542aa6b4ecc98d17ca8875b5b08/doc_transformers-1.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-04-22 15:09:53",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "Vishnunkumar",
    "github_project": "doc_transformers",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "doc-transformers"
}
        
Elapsed time: 0.40282s