doccano-mini


Namedoccano-mini JSON
Version 0.0.10 PyPI version JSON
download
home_pagehttps://github.com/doccano/doccano-mini
SummaryAnnotation meets Large Language Models.
upload_time2023-04-04 04:55:23
maintainer
docs_urlNone
authorHironsan
requires_python>=3.8, !=2.7.*, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*, !=3.7.*
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # doccano-mini

doccano-mini is a few-shot annotation tool to assist the development of applications with Large language models (LLMs). Once you annotate a few text, you can solve your task (e.g. text classification) with LLMs via [LangChain](https://github.com/hwchase17/langchain).

At this time, the following tasks are supported:

- Text classification
- Question answering
- Summarization
- Paraphrasing
- Named Entity Recognition
- Task Free

Note: This is an experimental project.

## Installation

```bash
pip install doccano-mini
```

## Usage

For this example, we will be using OpenAI’s APIs, so we need to set the environment variable in the terminal.

```bash
export OPENAI_API_KEY="..."
```

Then, we can run the server.

```bash
doccano-mini
```

Now, we can open the browser and go to `http://localhost:8501/` to see the interface.

### Step1: Annotate a few text

In this step, we will annotate a few text. We can add a new text by clicking the `+` button. Try it out by double-clicking on any cell. You'll notice you can edit all cell values.

![Step1](https://raw.githubusercontent.com/doccano/doccano-mini/master/docs/images/annotation.gif)

The editor also supports pasting in tabular data from Google Sheets, Excel, and many other similar tools.

![Copy and Paste](https://raw.githubusercontent.com/doccano/doccano-mini/master/docs/images/copy_and_paste.gif)

### Step2: Test your task

In this step, we will test your task. We can enter a new test to the text box and click the `Predict` button. Then, we can see the result of the test.

<img src="https://raw.githubusercontent.com/doccano/doccano-mini/master/docs/images/test_new_example.jpg" alt= “Step2” width="700">

### Step3: Download the config

In this step, we will download the [LangChain](https://github.com/hwchase17/langchain)'s config. We can click the `Download` button to download it. After loading the config file, we can predict a label for the new text.

```python
from langchain.chains import load_chain

chain = load_chain("chain.yaml")
chain.run("YOUR TEXT")
```

## Development

```bash
poetry install
streamlit run doccano_mini/home.py
```


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/doccano/doccano-mini",
    "name": "doccano-mini",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8, !=2.7.*, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*, !=3.7.*",
    "maintainer_email": "",
    "keywords": "",
    "author": "Hironsan",
    "author_email": "hiroki.nakayama.py@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/37/d2/6a41f8761b5a961b269cd8aeffb43705f51a11e46cdd28ddcfdcfab8276a/doccano_mini-0.0.10.tar.gz",
    "platform": null,
    "description": "# doccano-mini\n\ndoccano-mini is a few-shot annotation tool to assist the development of applications with Large language models (LLMs). Once you annotate a few text, you can solve your task (e.g. text classification) with LLMs via [LangChain](https://github.com/hwchase17/langchain).\n\nAt this time, the following tasks are supported:\n\n- Text classification\n- Question answering\n- Summarization\n- Paraphrasing\n- Named Entity Recognition\n- Task Free\n\nNote: This is an experimental project.\n\n## Installation\n\n```bash\npip install doccano-mini\n```\n\n## Usage\n\nFor this example, we will be using OpenAI\u2019s APIs, so we need to set the environment variable in the terminal.\n\n```bash\nexport OPENAI_API_KEY=\"...\"\n```\n\nThen, we can run the server.\n\n```bash\ndoccano-mini\n```\n\nNow, we can open the browser and go to `http://localhost:8501/` to see the interface.\n\n### Step1: Annotate a few text\n\nIn this step, we will annotate a few text. We can add a new text by clicking the `+` button. Try it out by double-clicking on any cell. You'll notice you can edit all cell values.\n\n![Step1](https://raw.githubusercontent.com/doccano/doccano-mini/master/docs/images/annotation.gif)\n\nThe editor also supports pasting in tabular data from Google Sheets, Excel, and many other similar tools.\n\n![Copy and Paste](https://raw.githubusercontent.com/doccano/doccano-mini/master/docs/images/copy_and_paste.gif)\n\n### Step2: Test your task\n\nIn this step, we will test your task. We can enter a new test to the text box and click the `Predict` button. Then, we can see the result of the test.\n\n<img src=\"https://raw.githubusercontent.com/doccano/doccano-mini/master/docs/images/test_new_example.jpg\" alt= \u201cStep2\u201d width=\"700\">\n\n### Step3: Download the config\n\nIn this step, we will download the [LangChain](https://github.com/hwchase17/langchain)'s config. We can click the `Download` button to download it. After loading the config file, we can predict a label for the new text.\n\n```python\nfrom langchain.chains import load_chain\n\nchain = load_chain(\"chain.yaml\")\nchain.run(\"YOUR TEXT\")\n```\n\n## Development\n\n```bash\npoetry install\nstreamlit run doccano_mini/home.py\n```\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Annotation meets Large Language Models.",
    "version": "0.0.10",
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b3c74c20efc74a155b90cb99b8decfa8c58815486359ffc6e6c2e8892e07ca08",
                "md5": "408df380cf18b2df31bfe6125f1cebd0",
                "sha256": "bc39c2e3ff44b1b7b3227dd7ef824c680030727809d8691774d7bfa2de49b500"
            },
            "downloads": -1,
            "filename": "doccano_mini-0.0.10-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "408df380cf18b2df31bfe6125f1cebd0",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8, !=2.7.*, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*, !=3.7.*",
            "size": 20688,
            "upload_time": "2023-04-04T04:55:20",
            "upload_time_iso_8601": "2023-04-04T04:55:20.992410Z",
            "url": "https://files.pythonhosted.org/packages/b3/c7/4c20efc74a155b90cb99b8decfa8c58815486359ffc6e6c2e8892e07ca08/doccano_mini-0.0.10-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "37d26a41f8761b5a961b269cd8aeffb43705f51a11e46cdd28ddcfdcfab8276a",
                "md5": "a3fbe218f1ff14f7de02a74838fde02f",
                "sha256": "4f56240e56b7e76afdaf6188c13de0d3ca8980328a14cb57448511f603e8da5f"
            },
            "downloads": -1,
            "filename": "doccano_mini-0.0.10.tar.gz",
            "has_sig": false,
            "md5_digest": "a3fbe218f1ff14f7de02a74838fde02f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8, !=2.7.*, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*, !=3.7.*",
            "size": 12929,
            "upload_time": "2023-04-04T04:55:23",
            "upload_time_iso_8601": "2023-04-04T04:55:23.967240Z",
            "url": "https://files.pythonhosted.org/packages/37/d2/6a41f8761b5a961b269cd8aeffb43705f51a11e46cdd28ddcfdcfab8276a/doccano_mini-0.0.10.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-04-04 04:55:23",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "doccano",
    "github_project": "doccano-mini",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "doccano-mini"
}
        
Elapsed time: 0.13082s