<p align="center">
<a href="https://github.com/docling-project/docling">
<img loading="lazy" alt="Docling" src="https://github.com/docling-project/docling/raw/main/docs/assets/docling_processing.png" width="100%"/>
</a>
</p>
# Docling
<p align="center">
<a href="https://trendshift.io/repositories/12132" target="_blank"><img src="https://trendshift.io/api/badge/repositories/12132" alt="DS4SD%2Fdocling | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</p>
[](https://arxiv.org/abs/2408.09869)
[](https://docling-project.github.io/docling/)
[](https://pypi.org/project/docling/)
[](https://pypi.org/project/docling/)
[](https://github.com/astral-sh/uv)
[](https://github.com/astral-sh/ruff)
[](https://pydantic.dev)
[](https://github.com/pre-commit/pre-commit)
[](https://opensource.org/licenses/MIT)
[](https://pepy.tech/projects/docling)
[](https://apify.com/vancura/docling)
[](https://www.bestpractices.dev/projects/10101)
[](https://lfaidata.foundation/projects/)
Docling simplifies document processing, parsing diverse formats — including advanced PDF understanding — and providing seamless integrations with the gen AI ecosystem.
## Features
* 🗂️ Parsing of [multiple document formats][supported_formats] incl. PDF, DOCX, PPTX, XLSX, HTML, WAV, MP3, images (PNG, TIFF, JPEG, ...), and more
* 📑 Advanced PDF understanding incl. page layout, reading order, table structure, code, formulas, image classification, and more
* 🧬 Unified, expressive [DoclingDocument][docling_document] representation format
* ↪️ Various [export formats][supported_formats] and options, including Markdown, HTML, [DocTags](https://arxiv.org/abs/2503.11576) and lossless JSON
* 🔒 Local execution capabilities for sensitive data and air-gapped environments
* 🤖 Plug-and-play [integrations][integrations] incl. LangChain, LlamaIndex, Crew AI & Haystack for agentic AI
* 🔍 Extensive OCR support for scanned PDFs and images
* 👓 Support of several Visual Language Models ([SmolDocling](https://huggingface.co/ds4sd/SmolDocling-256M-preview))
* 🎙️ Support for Audio with Automatic Speech Recognition (ASR) models
* 💻 Simple and convenient CLI
### Coming soon
* 📝 Metadata extraction, including title, authors, references & language
* 📝 Chart understanding (Barchart, Piechart, LinePlot, etc)
* 📝 Complex chemistry understanding (Molecular structures)
## Installation
To use Docling, simply install `docling` from your package manager, e.g. pip:
```bash
pip install docling
```
Works on macOS, Linux and Windows environments. Both x86_64 and arm64 architectures.
More [detailed installation instructions](https://docling-project.github.io/docling/installation/) are available in the docs.
## Getting started
To convert individual documents with python, use `convert()`, for example:
```python
from docling.document_converter import DocumentConverter
source = "https://arxiv.org/pdf/2408.09869" # document per local path or URL
converter = DocumentConverter()
result = converter.convert(source)
print(result.document.export_to_markdown()) # output: "## Docling Technical Report[...]"
```
More [advanced usage options](https://docling-project.github.io/docling/usage/) are available in
the docs.
## CLI
Docling has a built-in CLI to run conversions.
```bash
docling https://arxiv.org/pdf/2206.01062
```
You can also use 🥚[SmolDocling](https://huggingface.co/ds4sd/SmolDocling-256M-preview) and other VLMs via Docling CLI:
```bash
docling --pipeline vlm --vlm-model smoldocling https://arxiv.org/pdf/2206.01062
```
This will use MLX acceleration on supported Apple Silicon hardware.
Read more [here](https://docling-project.github.io/docling/usage/)
## Documentation
Check out Docling's [documentation](https://docling-project.github.io/docling/), for details on
installation, usage, concepts, recipes, extensions, and more.
## Examples
Go hands-on with our [examples](https://docling-project.github.io/docling/examples/),
demonstrating how to address different application use cases with Docling.
## Integrations
To further accelerate your AI application development, check out Docling's native
[integrations](https://docling-project.github.io/docling/integrations/) with popular frameworks
and tools.
## Get help and support
Please feel free to connect with us using the [discussion section](https://github.com/docling-project/docling/discussions).
## Technical report
For more details on Docling's inner workings, check out the [Docling Technical Report](https://arxiv.org/abs/2408.09869).
## Contributing
Please read [Contributing to Docling](https://github.com/docling-project/docling/blob/main/CONTRIBUTING.md) for details.
## References
If you use Docling in your projects, please consider citing the following:
```bib
@techreport{Docling,
author = {Deep Search Team},
month = {8},
title = {Docling Technical Report},
url = {https://arxiv.org/abs/2408.09869},
eprint = {2408.09869},
doi = {10.48550/arXiv.2408.09869},
version = {1.0.0},
year = {2024}
}
```
## License
The Docling codebase is under MIT license.
For individual model usage, please refer to the model licenses found in the original packages.
## LF AI & Data
Docling is hosted as a project in the [LF AI & Data Foundation](https://lfaidata.foundation/projects/).
### IBM ❤️ Open Source AI
The project was started by the AI for knowledge team at IBM Research Zurich.
[supported_formats]: https://docling-project.github.io/docling/usage/supported_formats/
[docling_document]: https://docling-project.github.io/docling/concepts/docling_document/
[integrations]: https://docling-project.github.io/docling/integrations/
Raw data
{
"_id": null,
"home_page": null,
"name": "docling",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.9",
"maintainer_email": null,
"keywords": "docling, convert, document, pdf, docx, html, markdown, layout model, segmentation, table structure, table former",
"author": null,
"author_email": "Christoph Auer <cau@zurich.ibm.com>, Michele Dolfi <dol@zurich.ibm.com>, Maxim Lysak <mly@zurich.ibm.com>, Nikos Livathinos <nli@zurich.ibm.com>, Ahmed Nassar <ahn@zurich.ibm.com>, Panos Vagenas <pva@zurich.ibm.com>, Peter Staar <taa@zurich.ibm.com>",
"download_url": "https://files.pythonhosted.org/packages/a2/73/69fb3749c419c846557ef397770e3309ad80898ee41ac957a14b0c8e3a2e/docling-2.41.0.tar.gz",
"platform": null,
"description": "<p align=\"center\">\n <a href=\"https://github.com/docling-project/docling\">\n <img loading=\"lazy\" alt=\"Docling\" src=\"https://github.com/docling-project/docling/raw/main/docs/assets/docling_processing.png\" width=\"100%\"/>\n </a>\n</p>\n\n# Docling\n\n<p align=\"center\">\n <a href=\"https://trendshift.io/repositories/12132\" target=\"_blank\"><img src=\"https://trendshift.io/api/badge/repositories/12132\" alt=\"DS4SD%2Fdocling | Trendshift\" style=\"width: 250px; height: 55px;\" width=\"250\" height=\"55\"/></a>\n</p>\n\n[](https://arxiv.org/abs/2408.09869)\n[](https://docling-project.github.io/docling/)\n[](https://pypi.org/project/docling/)\n[](https://pypi.org/project/docling/)\n[](https://github.com/astral-sh/uv)\n[](https://github.com/astral-sh/ruff)\n[](https://pydantic.dev)\n[](https://github.com/pre-commit/pre-commit)\n[](https://opensource.org/licenses/MIT)\n[](https://pepy.tech/projects/docling)\n[](https://apify.com/vancura/docling)\n[](https://www.bestpractices.dev/projects/10101)\n[](https://lfaidata.foundation/projects/)\n\nDocling simplifies document processing, parsing diverse formats \u2014 including advanced PDF understanding \u2014 and providing seamless integrations with the gen AI ecosystem.\n\n## Features\n\n* \ud83d\uddc2\ufe0f Parsing of [multiple document formats][supported_formats] incl. PDF, DOCX, PPTX, XLSX, HTML, WAV, MP3, images (PNG, TIFF, JPEG, ...), and more\n* \ud83d\udcd1 Advanced PDF understanding incl. page layout, reading order, table structure, code, formulas, image classification, and more\n* \ud83e\uddec Unified, expressive [DoclingDocument][docling_document] representation format\n* \u21aa\ufe0f Various [export formats][supported_formats] and options, including Markdown, HTML, [DocTags](https://arxiv.org/abs/2503.11576) and lossless JSON\n* \ud83d\udd12 Local execution capabilities for sensitive data and air-gapped environments\n* \ud83e\udd16 Plug-and-play [integrations][integrations] incl. LangChain, LlamaIndex, Crew AI & Haystack for agentic AI\n* \ud83d\udd0d Extensive OCR support for scanned PDFs and images\n* \ud83d\udc53 Support of several Visual Language Models ([SmolDocling](https://huggingface.co/ds4sd/SmolDocling-256M-preview))\n* \ud83c\udf99\ufe0f Support for Audio with Automatic Speech Recognition (ASR) models\n* \ud83d\udcbb Simple and convenient CLI\n\n### Coming soon\n\n* \ud83d\udcdd Metadata extraction, including title, authors, references & language\n* \ud83d\udcdd Chart understanding (Barchart, Piechart, LinePlot, etc)\n* \ud83d\udcdd Complex chemistry understanding (Molecular structures)\n\n## Installation\n\nTo use Docling, simply install `docling` from your package manager, e.g. pip:\n```bash\npip install docling\n```\n\nWorks on macOS, Linux and Windows environments. Both x86_64 and arm64 architectures.\n\nMore [detailed installation instructions](https://docling-project.github.io/docling/installation/) are available in the docs.\n\n## Getting started\n\nTo convert individual documents with python, use `convert()`, for example:\n\n```python\nfrom docling.document_converter import DocumentConverter\n\nsource = \"https://arxiv.org/pdf/2408.09869\" # document per local path or URL\nconverter = DocumentConverter()\nresult = converter.convert(source)\nprint(result.document.export_to_markdown()) # output: \"## Docling Technical Report[...]\"\n```\n\nMore [advanced usage options](https://docling-project.github.io/docling/usage/) are available in\nthe docs.\n\n## CLI\n\nDocling has a built-in CLI to run conversions.\n\n```bash\ndocling https://arxiv.org/pdf/2206.01062\n```\n\nYou can also use \ud83e\udd5a[SmolDocling](https://huggingface.co/ds4sd/SmolDocling-256M-preview) and other VLMs via Docling CLI:\n```bash\ndocling --pipeline vlm --vlm-model smoldocling https://arxiv.org/pdf/2206.01062\n```\nThis will use MLX acceleration on supported Apple Silicon hardware.\n\nRead more [here](https://docling-project.github.io/docling/usage/)\n\n## Documentation\n\nCheck out Docling's [documentation](https://docling-project.github.io/docling/), for details on\ninstallation, usage, concepts, recipes, extensions, and more.\n\n## Examples\n\nGo hands-on with our [examples](https://docling-project.github.io/docling/examples/),\ndemonstrating how to address different application use cases with Docling.\n\n## Integrations\n\nTo further accelerate your AI application development, check out Docling's native\n[integrations](https://docling-project.github.io/docling/integrations/) with popular frameworks\nand tools.\n\n## Get help and support\n\nPlease feel free to connect with us using the [discussion section](https://github.com/docling-project/docling/discussions).\n\n## Technical report\n\nFor more details on Docling's inner workings, check out the [Docling Technical Report](https://arxiv.org/abs/2408.09869).\n\n## Contributing\n\nPlease read [Contributing to Docling](https://github.com/docling-project/docling/blob/main/CONTRIBUTING.md) for details.\n\n## References\n\nIf you use Docling in your projects, please consider citing the following:\n\n```bib\n@techreport{Docling,\n author = {Deep Search Team},\n month = {8},\n title = {Docling Technical Report},\n url = {https://arxiv.org/abs/2408.09869},\n eprint = {2408.09869},\n doi = {10.48550/arXiv.2408.09869},\n version = {1.0.0},\n year = {2024}\n}\n```\n\n## License\n\nThe Docling codebase is under MIT license.\nFor individual model usage, please refer to the model licenses found in the original packages.\n\n## LF AI & Data\n\nDocling is hosted as a project in the [LF AI & Data Foundation](https://lfaidata.foundation/projects/).\n\n### IBM \u2764\ufe0f Open Source AI\n\nThe project was started by the AI for knowledge team at IBM Research Zurich.\n\n[supported_formats]: https://docling-project.github.io/docling/usage/supported_formats/\n[docling_document]: https://docling-project.github.io/docling/concepts/docling_document/\n[integrations]: https://docling-project.github.io/docling/integrations/\n",
"bugtrack_url": null,
"license": null,
"summary": "SDK and CLI for parsing PDF, DOCX, HTML, and more, to a unified document representation for powering downstream workflows such as gen AI applications.",
"version": "2.41.0",
"project_urls": {
"changelog": "https://github.com/docling-project/docling/blob/main/CHANGELOG.md",
"homepage": "https://github.com/docling-project/docling",
"issues": "https://github.com/docling-project/docling/issues",
"repository": "https://github.com/docling-project/docling"
},
"split_keywords": [
"docling",
" convert",
" document",
" pdf",
" docx",
" html",
" markdown",
" layout model",
" segmentation",
" table structure",
" table former"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "c1f31be481aac97e3f86dd18991407898c8f64e31dc365e6834ba7e92c4613fd",
"md5": "80e2e209b8e80da683e6806f6be69dd1",
"sha256": "d7869b1b461f13a386aa92c3d7fe8d596f773c41ddcfc1c8be667d131a0310e5"
},
"downloads": -1,
"filename": "docling-2.41.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "80e2e209b8e80da683e6806f6be69dd1",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.9",
"size": 187496,
"upload_time": "2025-07-10T14:26:36",
"upload_time_iso_8601": "2025-07-10T14:26:36.345683Z",
"url": "https://files.pythonhosted.org/packages/c1/f3/1be481aac97e3f86dd18991407898c8f64e31dc365e6834ba7e92c4613fd/docling-2.41.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "a27369fb3749c419c846557ef397770e3309ad80898ee41ac957a14b0c8e3a2e",
"md5": "3d4bb2f5fbb92a7615b15a655e0d450a",
"sha256": "94adf5cceb361b63e7e115b6b557f34ee28a5f52e0603f93fe36f98691e9c49e"
},
"downloads": -1,
"filename": "docling-2.41.0.tar.gz",
"has_sig": false,
"md5_digest": "3d4bb2f5fbb92a7615b15a655e0d450a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.9",
"size": 166338,
"upload_time": "2025-07-10T14:26:37",
"upload_time_iso_8601": "2025-07-10T14:26:37.971410Z",
"url": "https://files.pythonhosted.org/packages/a2/73/69fb3749c419c846557ef397770e3309ad80898ee41ac957a14b0c8e3a2e/docling-2.41.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-10 14:26:37",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "docling-project",
"github_project": "docling",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "docling"
}