docling


Namedocling JSON
Version 2.58.0 PyPI version JSON
download
home_pageNone
SummarySDK and CLI for parsing PDF, DOCX, HTML, and more, to a unified document representation for powering downstream workflows such as gen AI applications.
upload_time2025-10-22 11:32:52
maintainerNone
docs_urlNone
authorNone
requires_python<4.0,>=3.9
licenseNone
keywords docling convert document pdf docx html markdown layout model segmentation table structure table former
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center">
  <a href="https://github.com/docling-project/docling">
    <img loading="lazy" alt="Docling" src="https://github.com/docling-project/docling/raw/main/docs/assets/docling_processing.png" width="100%"/>
  </a>
</p>

# Docling

<p align="center">
  <a href="https://trendshift.io/repositories/12132" target="_blank"><img src="https://trendshift.io/api/badge/repositories/12132" alt="DS4SD%2Fdocling | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</p>

[![arXiv](https://img.shields.io/badge/arXiv-2408.09869-b31b1b.svg)](https://arxiv.org/abs/2408.09869)
[![Docs](https://img.shields.io/badge/docs-live-brightgreen)](https://docling-project.github.io/docling/)
[![PyPI version](https://img.shields.io/pypi/v/docling)](https://pypi.org/project/docling/)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/docling)](https://pypi.org/project/docling/)
[![uv](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/uv/main/assets/badge/v0.json)](https://github.com/astral-sh/uv)
[![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)
[![Pydantic v2](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/pydantic/pydantic/main/docs/badge/v2.json)](https://pydantic.dev)
[![pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://github.com/pre-commit/pre-commit)
[![License MIT](https://img.shields.io/github/license/docling-project/docling)](https://opensource.org/licenses/MIT)
[![PyPI Downloads](https://static.pepy.tech/badge/docling/month)](https://pepy.tech/projects/docling)
[![Docling Actor](https://apify.com/actor-badge?actor=vancura/docling?fpr=docling)](https://apify.com/vancura/docling)
[![Chat with Dosu](https://dosu.dev/dosu-chat-badge.svg)](https://app.dosu.dev/097760a8-135e-4789-8234-90c8837d7f1c/ask?utm_source=github)
[![Discord](https://img.shields.io/discord/1399788921306746971?color=6A7EC2&logo=discord&logoColor=ffffff)](https://docling.ai/discord)
[![OpenSSF Best Practices](https://www.bestpractices.dev/projects/10101/badge)](https://www.bestpractices.dev/projects/10101)
[![LF AI & Data](https://img.shields.io/badge/LF%20AI%20%26%20Data-003778?logo=linuxfoundation&logoColor=fff&color=0094ff&labelColor=003778)](https://lfaidata.foundation/projects/)

Docling simplifies document processing, parsing diverse formats โ€” including advanced PDF understanding โ€” and providing seamless integrations with the gen AI ecosystem.

## Features

* ๐Ÿ—‚๏ธ Parsing of [multiple document formats][supported_formats] incl. PDF, DOCX, PPTX, XLSX, HTML, WAV, MP3, VTT, images (PNG, TIFF, JPEG, ...), and more
* ๐Ÿ“‘ Advanced PDF understanding incl. page layout, reading order, table structure, code, formulas, image classification, and more
* ๐Ÿงฌ Unified, expressive [DoclingDocument][docling_document] representation format
* โ†ช๏ธ Various [export formats][supported_formats] and options, including Markdown, HTML, [DocTags](https://arxiv.org/abs/2503.11576) and lossless JSON
* ๐Ÿ”’ Local execution capabilities for sensitive data and air-gapped environments
* ๐Ÿค– Plug-and-play [integrations][integrations] incl. LangChain, LlamaIndex, Crew AI & Haystack for agentic AI
* ๐Ÿ” Extensive OCR support for scanned PDFs and images
* ๐Ÿ‘“ Support of several Visual Language Models ([GraniteDocling](https://huggingface.co/ibm-granite/granite-docling-258M))
* ๐ŸŽ™๏ธ Audio support with Automatic Speech Recognition (ASR) models
* ๐Ÿ”Œ Connect to any agent using the [MCP server](https://docling-project.github.io/docling/usage/mcp/)
* ๐Ÿ’ป Simple and convenient CLI

### What's new
* ๐Ÿ“ค Structured [information extraction][extraction] \[๐Ÿงช beta\]
* ๐Ÿ“‘ New layout model (**Heron**) by default, for faster PDF parsing
* ๐Ÿ”Œ [MCP server](https://docling-project.github.io/docling/usage/mcp/) for agentic applications
* ๐Ÿ’ฌ Parsing of Web Video Text Tracks (WebVTT) files

### Coming soon

* ๐Ÿ“ Metadata extraction, including title, authors, references & language
* ๐Ÿ“ Chart understanding (Barchart, Piechart, LinePlot, etc)
* ๐Ÿ“ Complex chemistry understanding (Molecular structures)

## Installation

To use Docling, simply install `docling` from your package manager, e.g. pip:
```bash
pip install docling
```

Works on macOS, Linux and Windows environments. Both x86_64 and arm64 architectures.

More [detailed installation instructions](https://docling-project.github.io/docling/installation/) are available in the docs.

## Getting started

To convert individual documents with python, use `convert()`, for example:

```python
from docling.document_converter import DocumentConverter

source = "https://arxiv.org/pdf/2408.09869"  # document per local path or URL
converter = DocumentConverter()
result = converter.convert(source)
print(result.document.export_to_markdown())  # output: "## Docling Technical Report[...]"
```

More [advanced usage options](https://docling-project.github.io/docling/usage/advanced_options/) are available in
the docs.

## CLI

Docling has a built-in CLI to run conversions.

```bash
docling https://arxiv.org/pdf/2206.01062
```

You can also use ๐Ÿฅš[GraniteDocling](https://huggingface.co/ibm-granite/granite-docling-258M) and other VLMs via Docling CLI:
```bash
docling --pipeline vlm --vlm-model granite_docling https://arxiv.org/pdf/2206.01062
```
This will use MLX acceleration on supported Apple Silicon hardware.

Read more [here](https://docling-project.github.io/docling/usage/)

## Documentation

Check out Docling's [documentation](https://docling-project.github.io/docling/), for details on
installation, usage, concepts, recipes, extensions, and more.

## Examples

Go hands-on with our [examples](https://docling-project.github.io/docling/examples/),
demonstrating how to address different application use cases with Docling.

## Integrations

To further accelerate your AI application development, check out Docling's native
[integrations](https://docling-project.github.io/docling/integrations/) with popular frameworks
and tools.

## Get help and support

Please feel free to connect with us using the [discussion section](https://github.com/docling-project/docling/discussions).

## Technical report

For more details on Docling's inner workings, check out the [Docling Technical Report](https://arxiv.org/abs/2408.09869).

## Contributing

Please read [Contributing to Docling](https://github.com/docling-project/docling/blob/main/CONTRIBUTING.md) for details.

## References

If you use Docling in your projects, please consider citing the following:

```bib
@techreport{Docling,
  author = {Deep Search Team},
  month = {8},
  title = {Docling Technical Report},
  url = {https://arxiv.org/abs/2408.09869},
  eprint = {2408.09869},
  doi = {10.48550/arXiv.2408.09869},
  version = {1.0.0},
  year = {2024}
}
```

## License

The Docling codebase is under MIT license.
For individual model usage, please refer to the model licenses found in the original packages.

## LF AI & Data

Docling is hosted as a project in the [LF AI & Data Foundation](https://lfaidata.foundation/projects/).

### IBM โค๏ธ Open Source AI

The project was started by the AI for knowledge team at IBM Research Zurich.

[supported_formats]: https://docling-project.github.io/docling/usage/supported_formats/
[docling_document]: https://docling-project.github.io/docling/concepts/docling_document/
[integrations]: https://docling-project.github.io/docling/integrations/
[extraction]: https://docling-project.github.io/docling/examples/extraction/

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "docling",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": "docling, convert, document, pdf, docx, html, markdown, layout model, segmentation, table structure, table former",
    "author": null,
    "author_email": "Christoph Auer <cau@zurich.ibm.com>, Michele Dolfi <dol@zurich.ibm.com>, Maxim Lysak <mly@zurich.ibm.com>, Nikos Livathinos <nli@zurich.ibm.com>, Ahmed Nassar <ahn@zurich.ibm.com>, Panos Vagenas <pva@zurich.ibm.com>, Peter Staar <taa@zurich.ibm.com>",
    "download_url": "https://files.pythonhosted.org/packages/26/96/435a8a5da619fe80f04eb33d7c597a971d9da1b197ed3edb0aa886742cf9/docling-2.58.0.tar.gz",
    "platform": null,
    "description": "<p align=\"center\">\n  <a href=\"https://github.com/docling-project/docling\">\n    <img loading=\"lazy\" alt=\"Docling\" src=\"https://github.com/docling-project/docling/raw/main/docs/assets/docling_processing.png\" width=\"100%\"/>\n  </a>\n</p>\n\n# Docling\n\n<p align=\"center\">\n  <a href=\"https://trendshift.io/repositories/12132\" target=\"_blank\"><img src=\"https://trendshift.io/api/badge/repositories/12132\" alt=\"DS4SD%2Fdocling | Trendshift\" style=\"width: 250px; height: 55px;\" width=\"250\" height=\"55\"/></a>\n</p>\n\n[![arXiv](https://img.shields.io/badge/arXiv-2408.09869-b31b1b.svg)](https://arxiv.org/abs/2408.09869)\n[![Docs](https://img.shields.io/badge/docs-live-brightgreen)](https://docling-project.github.io/docling/)\n[![PyPI version](https://img.shields.io/pypi/v/docling)](https://pypi.org/project/docling/)\n[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/docling)](https://pypi.org/project/docling/)\n[![uv](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/uv/main/assets/badge/v0.json)](https://github.com/astral-sh/uv)\n[![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)\n[![Pydantic v2](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/pydantic/pydantic/main/docs/badge/v2.json)](https://pydantic.dev)\n[![pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://github.com/pre-commit/pre-commit)\n[![License MIT](https://img.shields.io/github/license/docling-project/docling)](https://opensource.org/licenses/MIT)\n[![PyPI Downloads](https://static.pepy.tech/badge/docling/month)](https://pepy.tech/projects/docling)\n[![Docling Actor](https://apify.com/actor-badge?actor=vancura/docling?fpr=docling)](https://apify.com/vancura/docling)\n[![Chat with Dosu](https://dosu.dev/dosu-chat-badge.svg)](https://app.dosu.dev/097760a8-135e-4789-8234-90c8837d7f1c/ask?utm_source=github)\n[![Discord](https://img.shields.io/discord/1399788921306746971?color=6A7EC2&logo=discord&logoColor=ffffff)](https://docling.ai/discord)\n[![OpenSSF Best Practices](https://www.bestpractices.dev/projects/10101/badge)](https://www.bestpractices.dev/projects/10101)\n[![LF AI & Data](https://img.shields.io/badge/LF%20AI%20%26%20Data-003778?logo=linuxfoundation&logoColor=fff&color=0094ff&labelColor=003778)](https://lfaidata.foundation/projects/)\n\nDocling simplifies document processing, parsing diverse formats \u2014 including advanced PDF understanding \u2014 and providing seamless integrations with the gen AI ecosystem.\n\n## Features\n\n* \ud83d\uddc2\ufe0f Parsing of [multiple document formats][supported_formats] incl. PDF, DOCX, PPTX, XLSX, HTML, WAV, MP3, VTT, images (PNG, TIFF, JPEG, ...), and more\n* \ud83d\udcd1 Advanced PDF understanding incl. page layout, reading order, table structure, code, formulas, image classification, and more\n* \ud83e\uddec Unified, expressive [DoclingDocument][docling_document] representation format\n* \u21aa\ufe0f Various [export formats][supported_formats] and options, including Markdown, HTML, [DocTags](https://arxiv.org/abs/2503.11576) and lossless JSON\n* \ud83d\udd12 Local execution capabilities for sensitive data and air-gapped environments\n* \ud83e\udd16 Plug-and-play [integrations][integrations] incl. LangChain, LlamaIndex, Crew AI & Haystack for agentic AI\n* \ud83d\udd0d Extensive OCR support for scanned PDFs and images\n* \ud83d\udc53 Support of several Visual Language Models ([GraniteDocling](https://huggingface.co/ibm-granite/granite-docling-258M))\n* \ud83c\udf99\ufe0f Audio support with Automatic Speech Recognition (ASR) models\n* \ud83d\udd0c Connect to any agent using the [MCP server](https://docling-project.github.io/docling/usage/mcp/)\n* \ud83d\udcbb Simple and convenient CLI\n\n### What's new\n* \ud83d\udce4 Structured [information extraction][extraction] \\[\ud83e\uddea beta\\]\n* \ud83d\udcd1 New layout model (**Heron**) by default, for faster PDF parsing\n* \ud83d\udd0c [MCP server](https://docling-project.github.io/docling/usage/mcp/) for agentic applications\n* \ud83d\udcac Parsing of Web Video Text Tracks (WebVTT) files\n\n### Coming soon\n\n* \ud83d\udcdd Metadata extraction, including title, authors, references & language\n* \ud83d\udcdd Chart understanding (Barchart, Piechart, LinePlot, etc)\n* \ud83d\udcdd Complex chemistry understanding (Molecular structures)\n\n## Installation\n\nTo use Docling, simply install `docling` from your package manager, e.g. pip:\n```bash\npip install docling\n```\n\nWorks on macOS, Linux and Windows environments. Both x86_64 and arm64 architectures.\n\nMore [detailed installation instructions](https://docling-project.github.io/docling/installation/) are available in the docs.\n\n## Getting started\n\nTo convert individual documents with python, use `convert()`, for example:\n\n```python\nfrom docling.document_converter import DocumentConverter\n\nsource = \"https://arxiv.org/pdf/2408.09869\"  # document per local path or URL\nconverter = DocumentConverter()\nresult = converter.convert(source)\nprint(result.document.export_to_markdown())  # output: \"## Docling Technical Report[...]\"\n```\n\nMore [advanced usage options](https://docling-project.github.io/docling/usage/advanced_options/) are available in\nthe docs.\n\n## CLI\n\nDocling has a built-in CLI to run conversions.\n\n```bash\ndocling https://arxiv.org/pdf/2206.01062\n```\n\nYou can also use \ud83e\udd5a[GraniteDocling](https://huggingface.co/ibm-granite/granite-docling-258M) and other VLMs via Docling CLI:\n```bash\ndocling --pipeline vlm --vlm-model granite_docling https://arxiv.org/pdf/2206.01062\n```\nThis will use MLX acceleration on supported Apple Silicon hardware.\n\nRead more [here](https://docling-project.github.io/docling/usage/)\n\n## Documentation\n\nCheck out Docling's [documentation](https://docling-project.github.io/docling/), for details on\ninstallation, usage, concepts, recipes, extensions, and more.\n\n## Examples\n\nGo hands-on with our [examples](https://docling-project.github.io/docling/examples/),\ndemonstrating how to address different application use cases with Docling.\n\n## Integrations\n\nTo further accelerate your AI application development, check out Docling's native\n[integrations](https://docling-project.github.io/docling/integrations/) with popular frameworks\nand tools.\n\n## Get help and support\n\nPlease feel free to connect with us using the [discussion section](https://github.com/docling-project/docling/discussions).\n\n## Technical report\n\nFor more details on Docling's inner workings, check out the [Docling Technical Report](https://arxiv.org/abs/2408.09869).\n\n## Contributing\n\nPlease read [Contributing to Docling](https://github.com/docling-project/docling/blob/main/CONTRIBUTING.md) for details.\n\n## References\n\nIf you use Docling in your projects, please consider citing the following:\n\n```bib\n@techreport{Docling,\n  author = {Deep Search Team},\n  month = {8},\n  title = {Docling Technical Report},\n  url = {https://arxiv.org/abs/2408.09869},\n  eprint = {2408.09869},\n  doi = {10.48550/arXiv.2408.09869},\n  version = {1.0.0},\n  year = {2024}\n}\n```\n\n## License\n\nThe Docling codebase is under MIT license.\nFor individual model usage, please refer to the model licenses found in the original packages.\n\n## LF AI & Data\n\nDocling is hosted as a project in the [LF AI & Data Foundation](https://lfaidata.foundation/projects/).\n\n### IBM \u2764\ufe0f Open Source AI\n\nThe project was started by the AI for knowledge team at IBM Research Zurich.\n\n[supported_formats]: https://docling-project.github.io/docling/usage/supported_formats/\n[docling_document]: https://docling-project.github.io/docling/concepts/docling_document/\n[integrations]: https://docling-project.github.io/docling/integrations/\n[extraction]: https://docling-project.github.io/docling/examples/extraction/\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "SDK and CLI for parsing PDF, DOCX, HTML, and more, to a unified document representation for powering downstream workflows such as gen AI applications.",
    "version": "2.58.0",
    "project_urls": {
        "changelog": "https://github.com/docling-project/docling/blob/main/CHANGELOG.md",
        "homepage": "https://github.com/docling-project/docling",
        "issues": "https://github.com/docling-project/docling/issues",
        "repository": "https://github.com/docling-project/docling"
    },
    "split_keywords": [
        "docling",
        " convert",
        " document",
        " pdf",
        " docx",
        " html",
        " markdown",
        " layout model",
        " segmentation",
        " table structure",
        " table former"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "b5685128fa336866f425052816db2c20a777b6060db84ab5a70a85fd01b1c334",
                "md5": "c3b195f711e894f69509ff9c2c717cb2",
                "sha256": "bc28a4603a249f7a73d39f23345a096f08801fbf430b803e36c6f350e9e0848e"
            },
            "downloads": -1,
            "filename": "docling-2.58.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c3b195f711e894f69509ff9c2c717cb2",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 251396,
            "upload_time": "2025-10-22T11:32:51",
            "upload_time_iso_8601": "2025-10-22T11:32:51.446348Z",
            "url": "https://files.pythonhosted.org/packages/b5/68/5128fa336866f425052816db2c20a777b6060db84ab5a70a85fd01b1c334/docling-2.58.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "2696435a8a5da619fe80f04eb33d7c597a971d9da1b197ed3edb0aa886742cf9",
                "md5": "6c88e2ce3cf2d7a2f0f4a9e8574d4ab9",
                "sha256": "c1d120d5179807e6fd72947f8709b7c2d716ae024df4b0df44c8abc0bb50476c"
            },
            "downloads": -1,
            "filename": "docling-2.58.0.tar.gz",
            "has_sig": false,
            "md5_digest": "6c88e2ce3cf2d7a2f0f4a9e8574d4ab9",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 231806,
            "upload_time": "2025-10-22T11:32:52",
            "upload_time_iso_8601": "2025-10-22T11:32:52.913943Z",
            "url": "https://files.pythonhosted.org/packages/26/96/435a8a5da619fe80f04eb33d7c597a971d9da1b197ed3edb0aa886742cf9/docling-2.58.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-22 11:32:52",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "docling-project",
    "github_project": "docling",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "docling"
}
        
Elapsed time: 3.22557s