docowling


Namedocowling JSON
Version 1.0.17 PyPI version JSON
download
home_pagehttps://github.com/mouraworks/docowling
SummarySDK and CLI for parsing PDF, DOCX, HTML, and more, to a unified document representation for powering downstream workflows such as gen AI applications.
upload_time2025-01-11 17:29:23
maintainerNone
docs_urlNone
authorChristoph Auer
requires_python<4.0,>=3.9
licenseMIT
keywords docowling convert document pdf docx html markdown layout model segmentation table structure table former
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center">
  <a href="https://github.com/mouraworks/docowling">
    <img loading="lazy" alt="Docowling" src="https://github.com/mouraworks/docowling/raw/main/docs/assets/docowling.png" width="80%"/>
  </a>
</p>

# Docowling

[![Docs](https://img.shields.io/badge/docs-live-brightgreen)](https://github.com/mouraworks/docowling/)
[![PyPI version](https://img.shields.io/pypi/v/docowling)](https://pypi.org/project/docowling/)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/docowling)](https://pypi.org/project/docowling/)
[![Poetry](https://img.shields.io/endpoint?url=https://python-poetry.org/badge/v0.json)](https://python-poetry.org/)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/)
[![Pydantic v2](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/pydantic/pydantic/main/docs/badge/v2.json)](https://pydantic.dev)

**Docowling**  is a fork of the [Docling](https://github.com/DS4SD/docling), an IBM project, developed to enhance functionalities and add new document processing capabilities.

## Why Docowling?
Like an owl watching for all prey, docowling is a fork intended to attack all types of documents.

<p align="center">
  <a href="https://github.com/mouraworks/docowling">
    <img loading="lazy" alt="Docowling" src="https://github.com/mouraworks/docowling/raw/main/docs/assets/docowling_csv.png" width="80%"/>
  </a>
</p>

## Features

* 📄 Converts popular formats (CSV, PDF, DOCX, PPTX, XLSX, Images, HTML, AsciiDoc & Markdown) to HTML, Markdown and JSON with embedded/referenced images
* 🧩 Unified DoclingDocument format for standardized representation
* 🤖 Ready-to-use integrations with LangChain, LlamaIndex, Crew AI & Haystack
* 💻 Intuitive CLI for efficient batch processing with customizable export parameters

## Coming Soon

* 📄 More formats compatibility
* 🤖 Optimize integrations with LangChain, Crew AI & Weaviate

## Installation

To use Docowling, simply install `docowling` from your package manager, e.g. pip or uv:
```bash
pip install docowling
```

```bash
uv pip install docowling
```

Works on macOS, Linux and Windows environments. Both x86_64 and arm64 architectures.

## Getting started

To convert individual documents, use `convert()`, for example:

```python
from docowling.document_converter import DocumentConverter

source = "https://arxiv.org/pdf/2408.09869"  # document per local path or URL
converter = DocumentConverter()
result = converter.convert(source)
print(result.document.export_to_markdown())  # output: "## Docowling Technical Report[...]"
```
```python
from docowling.document_converter import DocumentConverter

source = "/content/drive/MyDrive/TESLA.csv"  # document per local path or URL
converter = DocumentConverter()
result = converter.convert(source)
print(result.document.export_to_markdown())  
# output: "| Date     |      Open |      High [...]"
```

## License

The Docowling codebase is under MIT license.
For individual model usage, please refer to the model licenses found in the original packages.

## IBM ❤️ Thanks
Thank you IBM for creating Docling, the base of Docowling.
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/mouraworks/docowling",
    "name": "docowling",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": "docowling, convert, document, pdf, docx, html, markdown, layout model, segmentation, table structure, table former",
    "author": "Christoph Auer",
    "author_email": "cau@zurich.ibm.com",
    "download_url": "https://files.pythonhosted.org/packages/3a/7f/81bf59a1d6aacae53882a430db1247511a71d15ac0b64a4dc56b56ff486c/docowling-1.0.17.tar.gz",
    "platform": null,
    "description": "<p align=\"center\">\n  <a href=\"https://github.com/mouraworks/docowling\">\n    <img loading=\"lazy\" alt=\"Docowling\" src=\"https://github.com/mouraworks/docowling/raw/main/docs/assets/docowling.png\" width=\"80%\"/>\n  </a>\n</p>\n\n# Docowling\n\n[![Docs](https://img.shields.io/badge/docs-live-brightgreen)](https://github.com/mouraworks/docowling/)\n[![PyPI version](https://img.shields.io/pypi/v/docowling)](https://pypi.org/project/docowling/)\n[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/docowling)](https://pypi.org/project/docowling/)\n[![Poetry](https://img.shields.io/endpoint?url=https://python-poetry.org/badge/v0.json)](https://python-poetry.org/)\n[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n[![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/)\n[![Pydantic v2](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/pydantic/pydantic/main/docs/badge/v2.json)](https://pydantic.dev)\n\n**Docowling**  is a fork of the [Docling](https://github.com/DS4SD/docling), an IBM project, developed to enhance functionalities and add new document processing capabilities.\n\n## Why Docowling?\nLike an owl watching for all prey, docowling is a fork intended to attack all types of documents.\n\n<p align=\"center\">\n  <a href=\"https://github.com/mouraworks/docowling\">\n    <img loading=\"lazy\" alt=\"Docowling\" src=\"https://github.com/mouraworks/docowling/raw/main/docs/assets/docowling_csv.png\" width=\"80%\"/>\n  </a>\n</p>\n\n## Features\n\n* \ud83d\udcc4 Converts popular formats (CSV, PDF, DOCX, PPTX, XLSX, Images, HTML, AsciiDoc & Markdown) to HTML, Markdown and JSON with embedded/referenced images\n* \ud83e\udde9 Unified DoclingDocument format for standardized representation\n* \ud83e\udd16 Ready-to-use integrations with LangChain, LlamaIndex, Crew AI & Haystack\n* \ud83d\udcbb Intuitive CLI for efficient batch processing with customizable export parameters\n\n## Coming Soon\n\n* \ud83d\udcc4 More formats compatibility\n* \ud83e\udd16 Optimize integrations with LangChain, Crew AI & Weaviate\n\n## Installation\n\nTo use Docowling, simply install `docowling` from your package manager, e.g. pip or uv:\n```bash\npip install docowling\n```\n\n```bash\nuv pip install docowling\n```\n\nWorks on macOS, Linux and Windows environments. Both x86_64 and arm64 architectures.\n\n## Getting started\n\nTo convert individual documents, use `convert()`, for example:\n\n```python\nfrom docowling.document_converter import DocumentConverter\n\nsource = \"https://arxiv.org/pdf/2408.09869\"  # document per local path or URL\nconverter = DocumentConverter()\nresult = converter.convert(source)\nprint(result.document.export_to_markdown())  # output: \"## Docowling Technical Report[...]\"\n```\n```python\nfrom docowling.document_converter import DocumentConverter\n\nsource = \"/content/drive/MyDrive/TESLA.csv\"  # document per local path or URL\nconverter = DocumentConverter()\nresult = converter.convert(source)\nprint(result.document.export_to_markdown())  \n# output: \"| Date     |      Open |      High [...]\"\n```\n\n## License\n\nThe Docowling codebase is under MIT license.\nFor individual model usage, please refer to the model licenses found in the original packages.\n\n## IBM \u2764\ufe0f Thanks\nThank you IBM for creating Docling, the base of Docowling.",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "SDK and CLI for parsing PDF, DOCX, HTML, and more, to a unified document representation for powering downstream workflows such as gen AI applications.",
    "version": "1.0.17",
    "project_urls": {
        "Homepage": "https://github.com/mouraworks/docowling",
        "Repository": "https://github.com/mouraworks/docowling"
    },
    "split_keywords": [
        "docowling",
        " convert",
        " document",
        " pdf",
        " docx",
        " html",
        " markdown",
        " layout model",
        " segmentation",
        " table structure",
        " table former"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e82809096e2e365f72183d51bd32283f07edb788e4d95084fa8e0c1999d7e880",
                "md5": "e60915e7f68da15ba6e5d52a428de6cd",
                "sha256": "4a146c051ecd2b12068fce2a163c2b606a9026ec55348be65d9416ff5117a177"
            },
            "downloads": -1,
            "filename": "docowling-1.0.17-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e60915e7f68da15ba6e5d52a428de6cd",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 116154,
            "upload_time": "2025-01-11T17:29:20",
            "upload_time_iso_8601": "2025-01-11T17:29:20.303659Z",
            "url": "https://files.pythonhosted.org/packages/e8/28/09096e2e365f72183d51bd32283f07edb788e4d95084fa8e0c1999d7e880/docowling-1.0.17-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3a7f81bf59a1d6aacae53882a430db1247511a71d15ac0b64a4dc56b56ff486c",
                "md5": "9d17dedf6d9198ba681713f86957916c",
                "sha256": "ea2d976f4b978221c0a922e25c4fa45f4df30f2e63a39ba25395031b2ab1c87f"
            },
            "downloads": -1,
            "filename": "docowling-1.0.17.tar.gz",
            "has_sig": false,
            "md5_digest": "9d17dedf6d9198ba681713f86957916c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 87618,
            "upload_time": "2025-01-11T17:29:23",
            "upload_time_iso_8601": "2025-01-11T17:29:23.093488Z",
            "url": "https://files.pythonhosted.org/packages/3a/7f/81bf59a1d6aacae53882a430db1247511a71d15ac0b64a4dc56b56ff486c/docowling-1.0.17.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-11 17:29:23",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "mouraworks",
    "github_project": "docowling",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "docowling"
}
        
Elapsed time: 0.40866s