docsray-mcp


Namedocsray-mcp JSON
Version 0.3.3 PyPI version JSON
download
home_pageNone
SummaryAI-powered document perception and analysis MCP server with intelligent provider selection
upload_time2025-08-06 23:41:05
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseNone
keywords mcp document pdf ai llm analysis extraction llamaparse mistral-ocr ocrmypdf tesseract
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ๐Ÿ” Docsray MCP Server

[![PyPI](https://img.shields.io/pypi/v/docsray-mcp)](https://pypi.org/project/docsray-mcp/)
[![License: Apache 2.0](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![Python 3.9+](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/)
[![MCP](https://img.shields.io/badge/MCP-Compatible-green.svg)](https://github.com/anthropics/mcp)
[![Status](https://img.shields.io/badge/Status-Working-brightgreen.svg)](https://github.com/docsray/docsray-mcp)
[![Netlify Status](https://api.netlify.com/api/v1/badges/6065d1ba-7e6c-49fa-a97e-9cada2cbc00a/deploy-status)](https://app.netlify.com/projects/docsray/deploys)

**Docsray** is a powerful Model Context Protocol (MCP) server that gives AI assistants like Claude advanced document perception capabilities. Extract text, navigate pages, analyze structure, and understand any document with ease.

**โœ… Status: Published to PyPI and TestPyPI - Working in Cursor, Claude Desktop, and other MCP clients**

## โœจ Features

### ๐ŸŽฏ Five Powerful Tools

1. **`docsray_peek`** - Quick document overview with format detection and provider capabilities
2. **`docsray_map`** - Generate comprehensive document structure maps with caching
3. **`docsray_xray`** - AI-powered deep analysis extracting entities, relationships, and insights
4. **`docsray_extract`** - Extract content in multiple formats (markdown, text, JSON, tables)
5. **`docsray_seek`** - Navigate to specific pages, sections, or search for content

### ๐Ÿ”Œ Multi-Provider Architecture

- **PyMuPDF4LLM** - Lightning-fast PDF processing (โœ… Implemented)
  - Fast markdown extraction
  - Basic table detection
  - Multi-page support
  - Always enabled as fallback

- **LlamaParse** - Deep document understanding with LLMs (โœ… Implemented)
  - AI-powered entity extraction
  - Custom analysis instructions
  - Comprehensive caching in .docsray directories
  - Rich format preservation (markdown, images, tables)

- **PyTesseract** - OCR for scanned documents (๐Ÿ”„ Planned)
- **Mistral OCR** - AI-powered OCR and analysis (๐Ÿ”„ Planned)

### ๐Ÿš€ Key Benefits

- **Universal Input Support** - Local files (./path, ../path, /absolute) and URLs (https://)
- **Intelligent Provider Selection** - Automatically chooses the best tool for each task
- **Smart Caching** - LlamaParse results cached in .docsray directories for instant access
- **Dynamic Discovery** - Tools report actual capabilities based on what's enabled
- **Production Ready** - Comprehensive error handling, logging, and 56 tests
- **Self-Documenting** - Built-in resources for discovery by MCP clients

## ๐Ÿ“ฆ Installation

### Quick Start with uvx (Recommended)

```bash
# Run directly without installation
uvx docsray-mcp start

# Or install globally
uv tool install docsray-mcp
# Then run with:
docsray start
# or
docsray-mcp start
```

### Alternative: Install with pip

```bash
# Basic installation (PyMuPDF4LLM only)
pip install docsray-mcp

# With LlamaParse for AI analysis
pip install "docsray-mcp[ai]"

# Development installation
pip install -e ".[dev]"
```

## ๐Ÿš€ Quick Start

### 1. Set up API Keys (Optional but Recommended)

Create a `.env` file in your project:

```bash
# For AI-powered analysis with LlamaParse
LLAMAPARSE_API_KEY=llx-your-key-here

# Or use environment variables
export LLAMAPARSE_API_KEY=llx-your-key-here
```

Get your free LlamaParse API key at [cloud.llamaindex.ai](https://cloud.llamaindex.ai)

### 2. Configure with Your MCP Client

#### For Cursor

Add to your Cursor settings:

```json
{
  "mcpServers": {
    "docsray": {
      "command": "uvx",
      "args": ["docsray-mcp"],
      "env": {
        "LLAMAPARSE_API_KEY": "llx-your-key-here"
      }
    }
  }
}
```

#### For Claude Desktop

Add to `~/Library/Application Support/Claude/claude_desktop_config.json`:

```json
{
  "mcpServers": {
    "docsray": {
      "command": "uvx",
      "args": ["docsray-mcp"],
      "env": {
        "LLAMAPARSE_API_KEY": "llx-your-key-here"
      }
    }
  }
}
```

## ๐Ÿ“š Usage Examples

### Basic Document Overview

```
Peek at ./document.pdf to see its structure and available formats
```

### Extract Entities from Contracts

```
Xray ./contract.pdf and extract all parties, dates, payment terms, and obligations
```

### Navigate Documents

```
Map the complete structure of ./manual.pdf including all sections and subsections
```

### Extract Specific Content

```
Extract pages 10-20 from ./report.pdf as markdown
```

### Analyze Web Documents

```
Analyze https://arxiv.org/pdf/2301.00234.pdf for methodology and key findings
```

### Compare Providers

```
Extract text from document.pdf with provider pymupdf4llm (fast)
Xray document.pdf with provider llama-parse (AI analysis)
```

## ๐Ÿ› ๏ธ Advanced Configuration

### Environment Variables

```bash
# Provider Configuration
DOCSRAY_PYMUPDF4LLM_ENABLED=true  # Always true by default
DOCSRAY_LLAMAPARSE_ENABLED=true
LLAMAPARSE_API_KEY=llx-your-key

# Performance Tuning
DOCSRAY_CACHE_ENABLED=true
DOCSRAY_CACHE_TTL=3600
DOCSRAY_MAX_CONCURRENT_REQUESTS=5
DOCSRAY_TIMEOUT_SECONDS=30

# Logging
DOCSRAY_LOG_LEVEL=INFO
```

### Provider Capabilities

#### PyMuPDF4LLM (Always Available)
- โœ… Fast text extraction
- โœ… Markdown formatting
- โœ… Basic table detection
- โœ… Multi-page support
- โŒ No AI analysis
- โŒ No OCR

#### LlamaParse (When API Key Configured)
- โœ… AI-powered analysis
- โœ… Entity extraction
- โœ… Custom instructions
- โœ… Table extraction
- โœ… Image extraction
- โœ… Layout preservation
- โœ… Relationship mapping
- โœ… Result caching

## ๐Ÿงช Testing

```bash
# Run all tests
pytest tests/

# Run only unit tests (no API calls)
pytest tests/unit/

# Run integration tests
pytest tests/integration/

# Run with coverage
pytest tests/ --cov=src/docsray --cov-report=html
```

Current test coverage: **52 tests passing** with comprehensive coverage across all components

## ๐Ÿ“– API Reference

### Tool: docsray_peek

Get quick document overview and metadata.

```python
{
  "document_url": "path/to/document.pdf",
  "depth": "structure",  # metadata | structure | preview
  "provider": "auto"     # auto | pymupdf4llm | llama-parse
}
```

### Tool: docsray_map

Generate comprehensive document structure map.

```python
{
  "document_url": "path/to/document.pdf",
  "include_content": false,
  "analysis_depth": "deep",  # basic | deep | comprehensive
  "provider": "auto"
}
```

### Tool: docsray_xray

Deep AI-powered document analysis.

```python
{
  "document_url": "path/to/document.pdf",
  "analysis_type": ["entities", "key-points"],
  "custom_instructions": "Extract all dates and amounts",
  "provider": "llama-parse"
}
```

### Tool: docsray_extract

Extract content in various formats.

```python
{
  "document_url": "path/to/document.pdf",
  "extraction_targets": ["text", "tables"],
  "output_format": "markdown",  # markdown | text | json
  "pages": [1, 2, 3],  # Optional: specific pages
  "provider": "auto"
}
```

### Tool: docsray_seek

Navigate to specific document locations.

```python
{
  "document_url": "path/to/document.pdf",
  "target": {"page": 5},  # or {"section": "Introduction"} or {"query": "search text"}
  "extract_content": true,
  "provider": "auto"
}
```

## ๐Ÿ—๏ธ Architecture

```
docsray-mcp/
โ”œโ”€โ”€ src/docsray/
โ”‚   โ”œโ”€โ”€ server.py           # FastMCP server with discovery resources
โ”‚   โ”œโ”€โ”€ providers/          # Provider implementations
โ”‚   โ”‚   โ”œโ”€โ”€ base.py        # Provider interface
โ”‚   โ”‚   โ”œโ”€โ”€ pymupdf4llm.py # Fast PDF extraction
โ”‚   โ”‚   โ””โ”€โ”€ llamaparse.py  # AI-powered analysis
โ”‚   โ”œโ”€โ”€ tools/             # MCP tool implementations
โ”‚   โ”‚   โ”œโ”€โ”€ peek.py        # Document overview
โ”‚   โ”‚   โ”œโ”€โ”€ map.py         # Structure mapping
โ”‚   โ”‚   โ”œโ”€โ”€ xray.py        # Deep analysis
โ”‚   โ”‚   โ”œโ”€โ”€ extract.py     # Content extraction
โ”‚   โ”‚   โ””โ”€โ”€ seek.py        # Navigation
โ”‚   โ””โ”€โ”€ utils/             # Utilities
โ”‚       โ”œโ”€โ”€ cache.py       # Document caching
โ”‚       โ””โ”€โ”€ llamaparse_cache.py  # LlamaParse .docsray cache
โ”œโ”€โ”€ tests/
โ”‚   โ”œโ”€โ”€ unit/              # Fast isolated tests
โ”‚   โ”œโ”€โ”€ integration/       # Component interaction tests
โ”‚   โ””โ”€โ”€ manual/            # Debugging scripts
โ””โ”€โ”€ PROMPTS.md            # Example prompts for all use cases
```

## ๐Ÿค Contributing

We welcome contributions! See [CONTRIBUTING.md](CONTRIBUTING.md) for guidelines.

### Development Setup

```bash
# Clone the repository
git clone https://github.com/docsray/docsray-mcp.git
cd docsray-mcp

# Install in development mode
pip install -e ".[dev]"

# Run tests
pytest tests/

# Run linting
ruff check src/
```

## ๐Ÿ“„ License

This project is licensed under the Apache License 2.0 - see the [LICENSE](LICENSE) file for details.

## ๐Ÿ™ Acknowledgments

- Built on [FastMCP](https://github.com/jlowin/fastmcp) framework
- Document processing powered by [PyMuPDF4LLM](https://github.com/pymupdf/PyMuPDF4LLM)
- AI analysis powered by [LlamaParse](https://github.com/run-llama/llama_parse)
- Inspired by the [Model Context Protocol](https://github.com/anthropics/mcp) specification

## ๐Ÿ“ฌ Support

- ๐Ÿ“– [Documentation](https://docs.docsray.dev)
- ๐Ÿ› [Issue Tracker](https://github.com/docsray/docsray-mcp/issues)
- ๐Ÿ’ฌ [Discussions](https://github.com/docsray/docsray-mcp/discussions)

---

**Made with โค๏ธ for the MCP ecosystem**

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "docsray-mcp",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "mcp, document, pdf, ai, llm, analysis, extraction, llamaparse, mistral-ocr, ocrmypdf, tesseract",
    "author": null,
    "author_email": "Docsray Team <team@docsray.dev>",
    "download_url": "https://files.pythonhosted.org/packages/f4/9b/a927f03cb84d539434d067cd335cd77fed64f6c188c20defee6a64758050/docsray_mcp-0.3.3.tar.gz",
    "platform": null,
    "description": "# \ud83d\udd0d Docsray MCP Server\n\n[![PyPI](https://img.shields.io/pypi/v/docsray-mcp)](https://pypi.org/project/docsray-mcp/)\n[![License: Apache 2.0](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)\n[![Python 3.9+](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/)\n[![MCP](https://img.shields.io/badge/MCP-Compatible-green.svg)](https://github.com/anthropics/mcp)\n[![Status](https://img.shields.io/badge/Status-Working-brightgreen.svg)](https://github.com/docsray/docsray-mcp)\n[![Netlify Status](https://api.netlify.com/api/v1/badges/6065d1ba-7e6c-49fa-a97e-9cada2cbc00a/deploy-status)](https://app.netlify.com/projects/docsray/deploys)\n\n**Docsray** is a powerful Model Context Protocol (MCP) server that gives AI assistants like Claude advanced document perception capabilities. Extract text, navigate pages, analyze structure, and understand any document with ease.\n\n**\u2705 Status: Published to PyPI and TestPyPI - Working in Cursor, Claude Desktop, and other MCP clients**\n\n## \u2728 Features\n\n### \ud83c\udfaf Five Powerful Tools\n\n1. **`docsray_peek`** - Quick document overview with format detection and provider capabilities\n2. **`docsray_map`** - Generate comprehensive document structure maps with caching\n3. **`docsray_xray`** - AI-powered deep analysis extracting entities, relationships, and insights\n4. **`docsray_extract`** - Extract content in multiple formats (markdown, text, JSON, tables)\n5. **`docsray_seek`** - Navigate to specific pages, sections, or search for content\n\n### \ud83d\udd0c Multi-Provider Architecture\n\n- **PyMuPDF4LLM** - Lightning-fast PDF processing (\u2705 Implemented)\n  - Fast markdown extraction\n  - Basic table detection\n  - Multi-page support\n  - Always enabled as fallback\n\n- **LlamaParse** - Deep document understanding with LLMs (\u2705 Implemented)\n  - AI-powered entity extraction\n  - Custom analysis instructions\n  - Comprehensive caching in .docsray directories\n  - Rich format preservation (markdown, images, tables)\n\n- **PyTesseract** - OCR for scanned documents (\ud83d\udd04 Planned)\n- **Mistral OCR** - AI-powered OCR and analysis (\ud83d\udd04 Planned)\n\n### \ud83d\ude80 Key Benefits\n\n- **Universal Input Support** - Local files (./path, ../path, /absolute) and URLs (https://)\n- **Intelligent Provider Selection** - Automatically chooses the best tool for each task\n- **Smart Caching** - LlamaParse results cached in .docsray directories for instant access\n- **Dynamic Discovery** - Tools report actual capabilities based on what's enabled\n- **Production Ready** - Comprehensive error handling, logging, and 56 tests\n- **Self-Documenting** - Built-in resources for discovery by MCP clients\n\n## \ud83d\udce6 Installation\n\n### Quick Start with uvx (Recommended)\n\n```bash\n# Run directly without installation\nuvx docsray-mcp start\n\n# Or install globally\nuv tool install docsray-mcp\n# Then run with:\ndocsray start\n# or\ndocsray-mcp start\n```\n\n### Alternative: Install with pip\n\n```bash\n# Basic installation (PyMuPDF4LLM only)\npip install docsray-mcp\n\n# With LlamaParse for AI analysis\npip install \"docsray-mcp[ai]\"\n\n# Development installation\npip install -e \".[dev]\"\n```\n\n## \ud83d\ude80 Quick Start\n\n### 1. Set up API Keys (Optional but Recommended)\n\nCreate a `.env` file in your project:\n\n```bash\n# For AI-powered analysis with LlamaParse\nLLAMAPARSE_API_KEY=llx-your-key-here\n\n# Or use environment variables\nexport LLAMAPARSE_API_KEY=llx-your-key-here\n```\n\nGet your free LlamaParse API key at [cloud.llamaindex.ai](https://cloud.llamaindex.ai)\n\n### 2. Configure with Your MCP Client\n\n#### For Cursor\n\nAdd to your Cursor settings:\n\n```json\n{\n  \"mcpServers\": {\n    \"docsray\": {\n      \"command\": \"uvx\",\n      \"args\": [\"docsray-mcp\"],\n      \"env\": {\n        \"LLAMAPARSE_API_KEY\": \"llx-your-key-here\"\n      }\n    }\n  }\n}\n```\n\n#### For Claude Desktop\n\nAdd to `~/Library/Application Support/Claude/claude_desktop_config.json`:\n\n```json\n{\n  \"mcpServers\": {\n    \"docsray\": {\n      \"command\": \"uvx\",\n      \"args\": [\"docsray-mcp\"],\n      \"env\": {\n        \"LLAMAPARSE_API_KEY\": \"llx-your-key-here\"\n      }\n    }\n  }\n}\n```\n\n## \ud83d\udcda Usage Examples\n\n### Basic Document Overview\n\n```\nPeek at ./document.pdf to see its structure and available formats\n```\n\n### Extract Entities from Contracts\n\n```\nXray ./contract.pdf and extract all parties, dates, payment terms, and obligations\n```\n\n### Navigate Documents\n\n```\nMap the complete structure of ./manual.pdf including all sections and subsections\n```\n\n### Extract Specific Content\n\n```\nExtract pages 10-20 from ./report.pdf as markdown\n```\n\n### Analyze Web Documents\n\n```\nAnalyze https://arxiv.org/pdf/2301.00234.pdf for methodology and key findings\n```\n\n### Compare Providers\n\n```\nExtract text from document.pdf with provider pymupdf4llm (fast)\nXray document.pdf with provider llama-parse (AI analysis)\n```\n\n## \ud83d\udee0\ufe0f Advanced Configuration\n\n### Environment Variables\n\n```bash\n# Provider Configuration\nDOCSRAY_PYMUPDF4LLM_ENABLED=true  # Always true by default\nDOCSRAY_LLAMAPARSE_ENABLED=true\nLLAMAPARSE_API_KEY=llx-your-key\n\n# Performance Tuning\nDOCSRAY_CACHE_ENABLED=true\nDOCSRAY_CACHE_TTL=3600\nDOCSRAY_MAX_CONCURRENT_REQUESTS=5\nDOCSRAY_TIMEOUT_SECONDS=30\n\n# Logging\nDOCSRAY_LOG_LEVEL=INFO\n```\n\n### Provider Capabilities\n\n#### PyMuPDF4LLM (Always Available)\n- \u2705 Fast text extraction\n- \u2705 Markdown formatting\n- \u2705 Basic table detection\n- \u2705 Multi-page support\n- \u274c No AI analysis\n- \u274c No OCR\n\n#### LlamaParse (When API Key Configured)\n- \u2705 AI-powered analysis\n- \u2705 Entity extraction\n- \u2705 Custom instructions\n- \u2705 Table extraction\n- \u2705 Image extraction\n- \u2705 Layout preservation\n- \u2705 Relationship mapping\n- \u2705 Result caching\n\n## \ud83e\uddea Testing\n\n```bash\n# Run all tests\npytest tests/\n\n# Run only unit tests (no API calls)\npytest tests/unit/\n\n# Run integration tests\npytest tests/integration/\n\n# Run with coverage\npytest tests/ --cov=src/docsray --cov-report=html\n```\n\nCurrent test coverage: **52 tests passing** with comprehensive coverage across all components\n\n## \ud83d\udcd6 API Reference\n\n### Tool: docsray_peek\n\nGet quick document overview and metadata.\n\n```python\n{\n  \"document_url\": \"path/to/document.pdf\",\n  \"depth\": \"structure\",  # metadata | structure | preview\n  \"provider\": \"auto\"     # auto | pymupdf4llm | llama-parse\n}\n```\n\n### Tool: docsray_map\n\nGenerate comprehensive document structure map.\n\n```python\n{\n  \"document_url\": \"path/to/document.pdf\",\n  \"include_content\": false,\n  \"analysis_depth\": \"deep\",  # basic | deep | comprehensive\n  \"provider\": \"auto\"\n}\n```\n\n### Tool: docsray_xray\n\nDeep AI-powered document analysis.\n\n```python\n{\n  \"document_url\": \"path/to/document.pdf\",\n  \"analysis_type\": [\"entities\", \"key-points\"],\n  \"custom_instructions\": \"Extract all dates and amounts\",\n  \"provider\": \"llama-parse\"\n}\n```\n\n### Tool: docsray_extract\n\nExtract content in various formats.\n\n```python\n{\n  \"document_url\": \"path/to/document.pdf\",\n  \"extraction_targets\": [\"text\", \"tables\"],\n  \"output_format\": \"markdown\",  # markdown | text | json\n  \"pages\": [1, 2, 3],  # Optional: specific pages\n  \"provider\": \"auto\"\n}\n```\n\n### Tool: docsray_seek\n\nNavigate to specific document locations.\n\n```python\n{\n  \"document_url\": \"path/to/document.pdf\",\n  \"target\": {\"page\": 5},  # or {\"section\": \"Introduction\"} or {\"query\": \"search text\"}\n  \"extract_content\": true,\n  \"provider\": \"auto\"\n}\n```\n\n## \ud83c\udfd7\ufe0f Architecture\n\n```\ndocsray-mcp/\n\u251c\u2500\u2500 src/docsray/\n\u2502   \u251c\u2500\u2500 server.py           # FastMCP server with discovery resources\n\u2502   \u251c\u2500\u2500 providers/          # Provider implementations\n\u2502   \u2502   \u251c\u2500\u2500 base.py        # Provider interface\n\u2502   \u2502   \u251c\u2500\u2500 pymupdf4llm.py # Fast PDF extraction\n\u2502   \u2502   \u2514\u2500\u2500 llamaparse.py  # AI-powered analysis\n\u2502   \u251c\u2500\u2500 tools/             # MCP tool implementations\n\u2502   \u2502   \u251c\u2500\u2500 peek.py        # Document overview\n\u2502   \u2502   \u251c\u2500\u2500 map.py         # Structure mapping\n\u2502   \u2502   \u251c\u2500\u2500 xray.py        # Deep analysis\n\u2502   \u2502   \u251c\u2500\u2500 extract.py     # Content extraction\n\u2502   \u2502   \u2514\u2500\u2500 seek.py        # Navigation\n\u2502   \u2514\u2500\u2500 utils/             # Utilities\n\u2502       \u251c\u2500\u2500 cache.py       # Document caching\n\u2502       \u2514\u2500\u2500 llamaparse_cache.py  # LlamaParse .docsray cache\n\u251c\u2500\u2500 tests/\n\u2502   \u251c\u2500\u2500 unit/              # Fast isolated tests\n\u2502   \u251c\u2500\u2500 integration/       # Component interaction tests\n\u2502   \u2514\u2500\u2500 manual/            # Debugging scripts\n\u2514\u2500\u2500 PROMPTS.md            # Example prompts for all use cases\n```\n\n## \ud83e\udd1d Contributing\n\nWe welcome contributions! See [CONTRIBUTING.md](CONTRIBUTING.md) for guidelines.\n\n### Development Setup\n\n```bash\n# Clone the repository\ngit clone https://github.com/docsray/docsray-mcp.git\ncd docsray-mcp\n\n# Install in development mode\npip install -e \".[dev]\"\n\n# Run tests\npytest tests/\n\n# Run linting\nruff check src/\n```\n\n## \ud83d\udcc4 License\n\nThis project is licensed under the Apache License 2.0 - see the [LICENSE](LICENSE) file for details.\n\n## \ud83d\ude4f Acknowledgments\n\n- Built on [FastMCP](https://github.com/jlowin/fastmcp) framework\n- Document processing powered by [PyMuPDF4LLM](https://github.com/pymupdf/PyMuPDF4LLM)\n- AI analysis powered by [LlamaParse](https://github.com/run-llama/llama_parse)\n- Inspired by the [Model Context Protocol](https://github.com/anthropics/mcp) specification\n\n## \ud83d\udcec Support\n\n- \ud83d\udcd6 [Documentation](https://docs.docsray.dev)\n- \ud83d\udc1b [Issue Tracker](https://github.com/docsray/docsray-mcp/issues)\n- \ud83d\udcac [Discussions](https://github.com/docsray/docsray-mcp/discussions)\n\n---\n\n**Made with \u2764\ufe0f for the MCP ecosystem**\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "AI-powered document perception and analysis MCP server with intelligent provider selection",
    "version": "0.3.3",
    "project_urls": {
        "Documentation": "https://docsray.dev",
        "Homepage": "https://docsray.dev",
        "Issues": "https://github.com/xingh/docsray-mcp/issues",
        "Repository": "https://github.com/xingh/docsray-mcp"
    },
    "split_keywords": [
        "mcp",
        " document",
        " pdf",
        " ai",
        " llm",
        " analysis",
        " extraction",
        " llamaparse",
        " mistral-ocr",
        " ocrmypdf",
        " tesseract"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ae6bc28592742595d74b0a4cb09737456a73b2f655a271f34f06b1fc669bf8e7",
                "md5": "2c62971759cdf000a698726843f78b76",
                "sha256": "8ecd57a743a1c473c298884e2ef95be4bcaa3d538226fa4f8c8ca6253ef0f7a6"
            },
            "downloads": -1,
            "filename": "docsray_mcp-0.3.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2c62971759cdf000a698726843f78b76",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 50839,
            "upload_time": "2025-08-06T23:41:03",
            "upload_time_iso_8601": "2025-08-06T23:41:03.989089Z",
            "url": "https://files.pythonhosted.org/packages/ae/6b/c28592742595d74b0a4cb09737456a73b2f655a271f34f06b1fc669bf8e7/docsray_mcp-0.3.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "f49ba927f03cb84d539434d067cd335cd77fed64f6c188c20defee6a64758050",
                "md5": "44b944ced4ad673e82d68d0c3b39d301",
                "sha256": "f813428b2f23c1833249752933197afde7ba3145dc9438371091a42657913155"
            },
            "downloads": -1,
            "filename": "docsray_mcp-0.3.3.tar.gz",
            "has_sig": false,
            "md5_digest": "44b944ced4ad673e82d68d0c3b39d301",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 46539,
            "upload_time": "2025-08-06T23:41:05",
            "upload_time_iso_8601": "2025-08-06T23:41:05.392323Z",
            "url": "https://files.pythonhosted.org/packages/f4/9b/a927f03cb84d539434d067cd335cd77fed64f6c188c20defee6a64758050/docsray_mcp-0.3.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-06 23:41:05",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "xingh",
    "github_project": "docsray-mcp",
    "github_not_found": true,
    "lcname": "docsray-mcp"
}
        
Elapsed time: 2.04411s