docuwarp


Namedocuwarp JSON
Version 1.0.2 PyPI version JSON
download
home_pagehttps://github.com/pstwh/docuwarp
SummaryUnwarp documents
upload_time2024-07-15 01:04:37
maintainerNone
docs_urlNone
authorNone
requires_python<4,>=3.5
licenseNone
keywords document unwarp photo
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# Docuwarp

Docuwarp is a Python library for unwarping documents. It uses for inference the model from the paper "UVDoc: Neural Grid-based Document Unwarping." For more information about the paper behind this model, you can read the paper [here](https://igl.ethz.ch/projects/uvdoc). The GitHub repository maintained by the author is available [here](https://github.com/tanguymagne/UVDoc/tree/main).


## Installation

To install Docuwarp, follow these steps:

For cpu

```bash
pip install "docuwarp[cpu]"
```

For cuda 11.X
```bash
pip install "docuwarp[gpu]"
```

For cuda 12.X
```bash
pip install "docuwarp[gpu]" --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/
```

## Usage

### Command Line Interface

You can use Docuwarp from the command line by providing an image file:

```bash
docuwarp examples/1.jpg
```

### Using in Code

You can also incorporate Docuwarp into your Python code as follows:

```python
from PIL import Image
from docuwarp.unwarp import Unwarp

unwarp = Unwarp()
image = Image.open('examples/1.jpg')
unwarped_image = unwarp.inference(image)
```

If you want to use CUDA:
```python
from PIL import Image
from docuwarp.unwarp import Unwarp

unwarp = Unwarp(providers=["CUDAExecutionProvider"])
image = Image.open('examples/1.jpg')
unwarped_image = unwarp.inference(image)
```

Check all execution providers [here](https://onnxruntime.ai/docs/execution-providers/).

### Example

<table>
    <thead>
        <tr>
            <td>original</td>
            <td>unwarp</td>
        </tr>
    </thead>
    <tbody>
        <tr>
            <td><img src="https://raw.githubusercontent.com/pstwh/docuwarp/main/examples/1.jpg" width="256" /></td>
            <td><img src="https://raw.githubusercontent.com/pstwh/docuwarp/main/examples/1_unwarp.jpg" width="256" /></td>
        </tr>
        <tr>
            <td><img src="https://raw.githubusercontent.com/pstwh/docuwarp/main/examples/2.jpg" width="256" /></td>
            <td><img src="https://raw.githubusercontent.com/pstwh/docuwarp/main/examples/2_unwarp.jpg" width="256" /></td>
        </tr>
    </tbody>
</table>


## Citation

```
@inproceedings{UVDoc,
title={{UVDoc}: Neural Grid-based Document Unwarping},
author={Floor Verhoeven and Tanguy Magne and Olga Sorkine-Hornung},
booktitle = {SIGGRAPH ASIA, Technical Papers},
year = {2023},
url={https://doi.org/10.1145/3610548.3618174}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pstwh/docuwarp",
    "name": "docuwarp",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4,>=3.5",
    "maintainer_email": null,
    "keywords": "document, unwarp, photo",
    "author": null,
    "author_email": null,
    "download_url": null,
    "platform": null,
    "description": "\n# Docuwarp\n\nDocuwarp is a Python library for unwarping documents. It uses for inference the model from the paper \"UVDoc: Neural Grid-based Document Unwarping.\" For more information about the paper behind this model, you can read the paper [here](https://igl.ethz.ch/projects/uvdoc). The GitHub repository maintained by the author is available [here](https://github.com/tanguymagne/UVDoc/tree/main).\n\n\n## Installation\n\nTo install Docuwarp, follow these steps:\n\nFor cpu\n\n```bash\npip install \"docuwarp[cpu]\"\n```\n\nFor cuda 11.X\n```bash\npip install \"docuwarp[gpu]\"\n```\n\nFor cuda 12.X\n```bash\npip install \"docuwarp[gpu]\" --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/\n```\n\n## Usage\n\n### Command Line Interface\n\nYou can use Docuwarp from the command line by providing an image file:\n\n```bash\ndocuwarp examples/1.jpg\n```\n\n### Using in Code\n\nYou can also incorporate Docuwarp into your Python code as follows:\n\n```python\nfrom PIL import Image\nfrom docuwarp.unwarp import Unwarp\n\nunwarp = Unwarp()\nimage = Image.open('examples/1.jpg')\nunwarped_image = unwarp.inference(image)\n```\n\nIf you want to use CUDA:\n```python\nfrom PIL import Image\nfrom docuwarp.unwarp import Unwarp\n\nunwarp = Unwarp(providers=[\"CUDAExecutionProvider\"])\nimage = Image.open('examples/1.jpg')\nunwarped_image = unwarp.inference(image)\n```\n\nCheck all execution providers [here](https://onnxruntime.ai/docs/execution-providers/).\n\n### Example\n\n<table>\n    <thead>\n        <tr>\n            <td>original</td>\n            <td>unwarp</td>\n        </tr>\n    </thead>\n    <tbody>\n        <tr>\n            <td><img src=\"https://raw.githubusercontent.com/pstwh/docuwarp/main/examples/1.jpg\" width=\"256\" /></td>\n            <td><img src=\"https://raw.githubusercontent.com/pstwh/docuwarp/main/examples/1_unwarp.jpg\" width=\"256\" /></td>\n        </tr>\n        <tr>\n            <td><img src=\"https://raw.githubusercontent.com/pstwh/docuwarp/main/examples/2.jpg\" width=\"256\" /></td>\n            <td><img src=\"https://raw.githubusercontent.com/pstwh/docuwarp/main/examples/2_unwarp.jpg\" width=\"256\" /></td>\n        </tr>\n    </tbody>\n</table>\n\n\n## Citation\n\n```\n@inproceedings{UVDoc,\ntitle={{UVDoc}: Neural Grid-based Document Unwarping},\nauthor={Floor Verhoeven and Tanguy Magne and Olga Sorkine-Hornung},\nbooktitle = {SIGGRAPH ASIA, Technical Papers},\nyear = {2023},\nurl={https://doi.org/10.1145/3610548.3618174}\n}\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Unwarp documents",
    "version": "1.0.2",
    "project_urls": {
        "Homepage": "https://github.com/pstwh/docuwarp"
    },
    "split_keywords": [
        "document",
        " unwarp",
        " photo"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bc33d8e2eb0474df899c634a04251eb36a903af07ea4869b2885731f8b4ea016",
                "md5": "9317361717e74ec3cbf5404fcc6bb634",
                "sha256": "da0d3838bb13b2fcf768919af94a0f1354321ae0a49e774cf5dde9f65bc0a5e9"
            },
            "downloads": -1,
            "filename": "docuwarp-1.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "9317361717e74ec3cbf5404fcc6bb634",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4,>=3.5",
            "size": 14818901,
            "upload_time": "2024-07-15T01:04:37",
            "upload_time_iso_8601": "2024-07-15T01:04:37.602453Z",
            "url": "https://files.pythonhosted.org/packages/bc/33/d8e2eb0474df899c634a04251eb36a903af07ea4869b2885731f8b4ea016/docuwarp-1.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-15 01:04:37",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pstwh",
    "github_project": "docuwarp",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "docuwarp"
}
        
Elapsed time: 3.85106s