========
Overview
========
.. start-badges
.. image:: https://github.com/unmade/dokusan/workflows/Lint%20and%20tests/badge.svg
:alt: Build Status
:target: https://github.com/unmade/dokusan/blob/master/.github/workflows/lint-and-tests.yml
.. image:: https://codecov.io/gh/unmade/dokusan/branch/master/graph/badge.svg
:alt: Coverage Status
:target: https://codecov.io/gh/unmade/dokusan
.. image:: http://www.mypy-lang.org/static/mypy_badge.svg
:alt: Checked with mypy
:target: http://mypy-lang.org/
.. image:: https://img.shields.io/pypi/v/dokusan.svg
:alt: PyPI Package latest release
:target: https://pypi.org/project/dokusan
.. image:: https://img.shields.io/pypi/wheel/dokusan.svg
:alt: PyPI Wheel
:target: https://pypi.org/project/dokusan
.. image:: https://img.shields.io/pypi/pyversions/dokusan.svg
:alt: Supported versions
:target: https://pypi.org/project/dokusan
.. image:: https://img.shields.io/badge/License-GPLv3-purple.svg
:alt: GPLv3 License
:target: https://github.com/unmade/dokusan/blob/master/LICENSE
.. end-badges
Sudoku generator and solver with a step-by-step guidance
Installation
============
.. code-block:: bash
pip install dokusan
Quickstart
==========
Sudoku Solvers
--------------
Step-by-step solver
*******************
This solver tries to solve sudoku using human-like strategies.
Currently following techniques are supported:
- Naked/Hidden singles
- Naked Pairs/Triplets
- Locked Candidate
- XY-Wing
- Unique Rectangle
For example to see all techniques that sudoku has:
.. code-block:: python
from dokusan import solvers
from dokusan.boards import BoxSize, Sudoku
sudoku = Sudoku.from_list(
[
[0, 0, 0, 0, 9, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 2, 3, 0, 0],
[0, 0, 7, 0, 0, 1, 8, 2, 5],
[6, 0, 4, 0, 3, 8, 9, 0, 0],
[8, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 9, 0, 0, 0, 0, 0, 8],
[1, 7, 0, 0, 0, 0, 6, 0, 0],
[9, 0, 0, 0, 1, 0, 7, 4, 3],
[4, 0, 3, 0, 6, 0, 0, 0, 1],
],
box_size=BoxSize(3, 3),
)
{step.combination.name for step in solvers.steps(sudoku)}
Backtracking-based solver
*************************
This solver is based on backtracking algorithm,
however slightly modified to work fast
.. code-block:: python
from dokusan import solvers, renderers
from dokusan.boards import BoxSize, Sudoku
sudoku = Sudoku.from_list(
[
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 3, 0, 8, 5],
[0, 0, 1, 0, 2, 0, 0, 0, 0],
[0, 0, 0, 5, 0, 7, 0, 0, 0],
[0, 0, 4, 0, 0, 0, 1, 0, 0],
[0, 9, 0, 0, 0, 0, 0, 0, 0],
[5, 0, 0, 0, 0, 0, 0, 7, 3],
[0, 0, 2, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 4, 0, 0, 0, 9],
],
box_size=BoxSize(3, 3),
)
solution = solvers.backtrack(sudoku)
print(renderers.colorful(solution))
Sudoku Generator
----------------
Generator algorithm is mainly based on
`article <https://dlbeer.co.nz/articles/sudoku.html>`_ by Daniel Beer.
The average time to generate Sudoku with rank of 150 is 700ms.
To generate a new sudoku:
.. code-block:: python
from dokusan import generators, renderers
sudoku = generators.random_sudoku(avg_rank=150)
print(renderers.colorful(sudoku))
Ranking and Sudoku difficulty
*****************************
``avg_rank`` option roughly defines the difficulty of the sudoku.
Sudoku with rank lower than 100 contains only naked/hidden singles.
Sudoku with rank greater than 150 contains
Naked Subsets/Locked Candidate/XY Wing/etc...,
however this is not always guaranteed.
For higher ranks it is also not guaranteed that generated Sudoku rank
will be higher than provided ``avg_rank``,
so to ensure sudoku has desired rank one can do the following:
.. code-block:: python
from dokusan import generators, stats
avg_rank = 450
while stats.rank(sudoku := generators.random_sudoku(avg_rank)) < avg_rank:
continue
Raw data
{
"_id": null,
"home_page": "",
"name": "dokusan",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8,<4.0",
"maintainer_email": "",
"keywords": "sudoku,sudoku-solver,sudoku-generator,solver,generator",
"author": "Aleksei Maslakov",
"author_email": "lesha.maslakov@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/53/9b/0c8f048f30d5bbf822c3337d4cd5ed8f75607f03588fdb4cade8cddcd162/dokusan-0.1.0.tar.gz",
"platform": null,
"description": "========\nOverview\n========\n\n.. start-badges\n\n.. image:: https://github.com/unmade/dokusan/workflows/Lint%20and%20tests/badge.svg\n :alt: Build Status\n :target: https://github.com/unmade/dokusan/blob/master/.github/workflows/lint-and-tests.yml\n\n.. image:: https://codecov.io/gh/unmade/dokusan/branch/master/graph/badge.svg\n :alt: Coverage Status\n :target: https://codecov.io/gh/unmade/dokusan\n\n.. image:: http://www.mypy-lang.org/static/mypy_badge.svg\n :alt: Checked with mypy\n :target: http://mypy-lang.org/\n\n.. image:: https://img.shields.io/pypi/v/dokusan.svg\n :alt: PyPI Package latest release\n :target: https://pypi.org/project/dokusan\n\n.. image:: https://img.shields.io/pypi/wheel/dokusan.svg\n :alt: PyPI Wheel\n :target: https://pypi.org/project/dokusan\n\n.. image:: https://img.shields.io/pypi/pyversions/dokusan.svg\n :alt: Supported versions\n :target: https://pypi.org/project/dokusan\n\n.. image:: https://img.shields.io/badge/License-GPLv3-purple.svg\n :alt: GPLv3 License\n :target: https://github.com/unmade/dokusan/blob/master/LICENSE\n\n.. end-badges\n\nSudoku generator and solver with a step-by-step guidance\n\nInstallation\n============\n\n.. code-block:: bash\n\n pip install dokusan\n\nQuickstart\n==========\n\nSudoku Solvers\n--------------\n\nStep-by-step solver\n*******************\n\nThis solver tries to solve sudoku using human-like strategies.\nCurrently following techniques are supported:\n\n- Naked/Hidden singles\n- Naked Pairs/Triplets\n- Locked Candidate\n- XY-Wing\n- Unique Rectangle\n\nFor example to see all techniques that sudoku has:\n\n.. code-block:: python\n\n from dokusan import solvers\n from dokusan.boards import BoxSize, Sudoku\n\n\n sudoku = Sudoku.from_list(\n [\n [0, 0, 0, 0, 9, 0, 1, 0, 0],\n [0, 0, 0, 0, 0, 2, 3, 0, 0],\n [0, 0, 7, 0, 0, 1, 8, 2, 5],\n [6, 0, 4, 0, 3, 8, 9, 0, 0],\n [8, 1, 0, 0, 0, 0, 0, 0, 0],\n [0, 0, 9, 0, 0, 0, 0, 0, 8],\n [1, 7, 0, 0, 0, 0, 6, 0, 0],\n [9, 0, 0, 0, 1, 0, 7, 4, 3],\n [4, 0, 3, 0, 6, 0, 0, 0, 1],\n ],\n box_size=BoxSize(3, 3),\n )\n\n {step.combination.name for step in solvers.steps(sudoku)}\n\nBacktracking-based solver\n*************************\n\nThis solver is based on backtracking algorithm,\nhowever slightly modified to work fast\n\n.. code-block:: python\n\n from dokusan import solvers, renderers\n from dokusan.boards import BoxSize, Sudoku\n\n\n sudoku = Sudoku.from_list(\n [\n [0, 0, 0, 0, 0, 0, 0, 0, 0],\n [0, 0, 0, 0, 0, 3, 0, 8, 5],\n [0, 0, 1, 0, 2, 0, 0, 0, 0],\n [0, 0, 0, 5, 0, 7, 0, 0, 0],\n [0, 0, 4, 0, 0, 0, 1, 0, 0],\n [0, 9, 0, 0, 0, 0, 0, 0, 0],\n [5, 0, 0, 0, 0, 0, 0, 7, 3],\n [0, 0, 2, 0, 1, 0, 0, 0, 0],\n [0, 0, 0, 0, 4, 0, 0, 0, 9],\n ],\n box_size=BoxSize(3, 3),\n )\n\n solution = solvers.backtrack(sudoku)\n print(renderers.colorful(solution))\n\nSudoku Generator\n----------------\n\nGenerator algorithm is mainly based on\n`article <https://dlbeer.co.nz/articles/sudoku.html>`_ by Daniel Beer.\nThe average time to generate Sudoku with rank of 150 is 700ms.\n\nTo generate a new sudoku:\n\n.. code-block:: python\n\n from dokusan import generators, renderers\n\n\n sudoku = generators.random_sudoku(avg_rank=150)\n print(renderers.colorful(sudoku))\n\nRanking and Sudoku difficulty\n*****************************\n\n``avg_rank`` option roughly defines the difficulty of the sudoku.\nSudoku with rank lower than 100 contains only naked/hidden singles.\nSudoku with rank greater than 150 contains\nNaked Subsets/Locked Candidate/XY Wing/etc...,\nhowever this is not always guaranteed.\n\nFor higher ranks it is also not guaranteed that generated Sudoku rank\nwill be higher than provided ``avg_rank``,\nso to ensure sudoku has desired rank one can do the following:\n\n.. code-block:: python\n\n from dokusan import generators, stats\n\n\n avg_rank = 450\n while stats.rank(sudoku := generators.random_sudoku(avg_rank)) < avg_rank:\n continue\n",
"bugtrack_url": null,
"license": "GPL-3.0",
"summary": "Sudoku generator and solver with a step-by-step guidance",
"version": "0.1.0",
"split_keywords": [
"sudoku",
"sudoku-solver",
"sudoku-generator",
"solver",
"generator"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "63aeb3ed699da71ac18d2d578725980d87be1b4fbc973cfa548e4c0968c2efd3",
"md5": "a62fb104e82479010c5dd8b9137795b6",
"sha256": "cddb3456de83e1af430191fcb7e8f25b86eb1a36103f535de01c0c0331f5baaa"
},
"downloads": -1,
"filename": "dokusan-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a62fb104e82479010c5dd8b9137795b6",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8,<4.0",
"size": 22669,
"upload_time": "2023-04-08T17:22:13",
"upload_time_iso_8601": "2023-04-08T17:22:13.598490Z",
"url": "https://files.pythonhosted.org/packages/63/ae/b3ed699da71ac18d2d578725980d87be1b4fbc973cfa548e4c0968c2efd3/dokusan-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "539b0c8f048f30d5bbf822c3337d4cd5ed8f75607f03588fdb4cade8cddcd162",
"md5": "c339e89720b44ed5b93bb9219f81eff3",
"sha256": "b504846e560e9fcddf99ed8bd38dab86f8d99a0c5f270cd2bea2c79347a6cd8b"
},
"downloads": -1,
"filename": "dokusan-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "c339e89720b44ed5b93bb9219f81eff3",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8,<4.0",
"size": 21518,
"upload_time": "2023-04-08T17:22:16",
"upload_time_iso_8601": "2023-04-08T17:22:16.567405Z",
"url": "https://files.pythonhosted.org/packages/53/9b/0c8f048f30d5bbf822c3337d4cd5ed8f75607f03588fdb4cade8cddcd162/dokusan-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-04-08 17:22:16",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "dokusan"
}