doublemanning


Namedoublemanning JSON
Version 1.0.0a0 PyPI version JSON
download
home_pagehttps://github.com/MNiMORPH/rating-curve-2x-manning/
SummaryStage-discharge relationships: double-Manning approach
upload_time2023-12-09 23:49:59
maintainer
docs_urlNone
authorAndrew D. Wickert
requires_python
license
keywords fluvial geomorphology sediment transport landscape evolution
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![DOI](https://zenodo.org/badge/388610692.svg)](https://zenodo.org/badge/latestdoi/388610692)

# doublemanning

## Package contents

This package contains two command-line utilities
* `doublemanning-fit` inverts stage—discharge data to generate a rating curve and the associated double-Manning-equation parameters:
  * A Manning's-equation relationships for an approximately rectangular channel
  * A generalized Manning's equation (power-law) relationship for flows across the floodplain
* `doublemanning-calc` uses this fit to perform forward computations:
  * Stage → discharge
  * Flow depth → discharge
  * Discharge → stage
  * Discharge → flow depth

## Installation

### From PyPI using Pip

This command will install the most recent stable release of `doublemanning`.

```bash
pip install doublemanning
```

### Editable, from a local directory

These instructions allow you to use the most recent version of `doublemanning` and to make your own edits.

These instructions assume that you have the GitHub CLI installed. If you do not, just change the repository-cloning line to a standard `git` command.

```bash
gh repo clone MNiMORPH/doublemanning
cd doublemanning
pip install -e .
```

## Running the double-Manning software

You should be able to run both commands by simply typing their names on the command line.
Here we provide the outputs form the "`-h`" help flag.
Such outputs are also provided if you enter the commands with no arguments.

### `doublemanning-fit`

**Note:** Although many command-line options exist to fit the data, I recommend using the `YAML` configuration-file option alone. This will allow you to access the full functionality of `doublemanning-fit` (the command-line options include only a smaller subset) and will self-document your work.

```bash
>> doublemanning-fit -h
usage: doublemanning-fit [-h] [-y CONFIGFILE] [-f DATAFILE]
                         [--delimiter DELIMITER] [-b CHANNEL_WIDTH]
                         [-H CHANNEL_DEPTH] [-s SLOPE] [-o OUTFILE]
                         [--use_depth] [--us_units] [--plot] [-v]

Pass channel and flow characteristics to obtain a "Double Manning" --
Manning\'s Equation (channel) + generic power-law (floodplain) stage--discharge
-- relationship.

options:
  -h, --help            show this help message and exit
  -y CONFIGFILE, --configfile CONFIGFILE
                        YAML file from which all inputs are read.
  -f DATAFILE, --datafile DATAFILE
                        file with two columns: Discharge, Stage
  --delimiter DELIMITER
                        "tab", "comma", or "semicolon"
  -b CHANNEL_WIDTH, --channel_width CHANNEL_WIDTH
                        river-channel width
  -H CHANNEL_DEPTH, --channel_depth CHANNEL_DEPTH
                        river-channel depth (not flow depth)
  -s SLOPE, --slope SLOPE
                        channel slope
  -o OUTFILE, --outfile OUTFILE
                        Stores fit parameters.
  --use_depth           Use flow depth instead of hydraulic radius.
  --us_units            Convert imported data from cfs and feet
  --plot                Plot stage-discharge relationship
  -v, --verbose         Plot stage-discharge relationship
```

### `doublemanning-calc`

The `doublemanning-calc` program returns a scalar value to `stdout`.

```bash
>> doublemanning-calc -h
usage: doublemanning-calc [-h] [-p PARAMFILE] [-zQ STAGE_DISCHARGE]
                          [-hQ DEPTH_DISCHARGE] [-Qz DISCHARGE_STAGE]
                          [-Qh DISCHARGE_DEPTH]

Return stage or discharge based on a double-Manning fit. All values are SI
(mks).

options:
  -h, --help            show this help message and exit
  -p PARAMFILE, --paramfile PARAMFILE
                        CSV file for double-Manning parameters.
  -zQ STAGE_DISCHARGE, --stage_discharge STAGE_DISCHARGE
                        Calculate discharge from this stage.
  -hQ DEPTH_DISCHARGE, --depth_discharge DEPTH_DISCHARGE
                        Calculate discharge from this flow depth.
  -Qz DISCHARGE_STAGE, --discharge_stage DISCHARGE_STAGE
                        Calculate stage from this discharge.
  -Qh DISCHARGE_DEPTH, --discharge_depth DISCHARGE_DEPTH
                        Calculate flow depth from this discharge.
```

## Physical and mathematical basis

### Core equation

The double-Manning approach applies the following combination of Manning's equation for in-channel flows (left of the $+$ sign) and a power-law equation for overbank flow (right of the $+$ sign):

$$Q = \frac{b}{n_\mathrm{ch}} h R_h^{2/3} S^{1/2} + k_\mathrm{fp} \left(h - h_\beta \right)^{P_\mathrm{fp}}$$

### Variables

| **Variable**    | **Description**                                                                                        | **Units [SI]**                                  |
|-----------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| $Q$             | Discharge                                                                                              | m$\mathrm{m}^3 \text{ s}^{-1}$                  |
| $b$             | Channel width                                                                                          | m                                               |
| $B$             | Valley-bottom width                                                                                    | m                                               |
| $B-b$           | Floodplain width                                                                                       | m                                               |
| $z_b$           | River-bed elevation (compared to an arbitrary datum)                                                   | m                                               |
| $z_s$           | River stage: water-surface elevation (compared to the same arbitrary datum)                            | m                                               |
| $h$             | Flow depth: $h = z_s - z_b$                                                                            | m                                               |
| $h_b$           | Channel-bank height                                                                                    | m                                               |
| $R_h$           | Hydraulic radius; for the assumed rectangular channel, $R_h = b \cdot h / (b + 2 (h \wedge h_\beta) )$ | m                                               |
| $n_\mathrm{ch}$ | Manning's roughness coefficient within the channel                                                     | m                                               |
| $S$             | River-channel slope                                                                                    | —                                         |
| $k_\mathrm{fp}$ | Floodplain-flow coefficient                                                                            | $\mathrm{m}^{3 - P_\mathrm{fp}} \text{ s}^{-1}$ |
| $P_\mathrm{fp}$ | Floodplain-flow exponent                                                                               | —                                         |

## Example

Because playing a game is usually quicker and more fun than reading the rules, we provide data and a YAML configuration file for the [Minnesota River near Jordan, MN, USA](examples/MinnesotaJordan), USGS gauge [05330000](https://waterdata.usgs.gov/monitoring-location/05330000/). `config.yaml` is commented and hopefully self-documented well enough; please open an "Issue" if you need some clarification.

### Running `doublemanning-fit`: obtaining the coefficients and plotting the result

`cd` to the `examples/MinnesotaJordan` directory.

```bash
doublemanning-fit -y config.yaml
```

#### `config.yaml`

This is the same `config.yaml` file [from the example](examples/MinnesotaJordan/config.yaml).

```yaml
river: Minnesota
station: Jordan

author: Andy Wickert

data:
    # Filename expected with columns "Q", "Stage"
    filename: 'MinnesotaJordan.tsv'
    # tab, space, or comma
    delimiter: 'tab'
    # If data set uses US cfs (Q) and feet (Stage), converts these to metric.
    us-units: True

channel:
    # meters; if ommitted, will be solved for as a free variable
    width: 100
    # meters; if omitted, will be solved for as a free variable
    # depth:
    # unitless
    slope: 1E-4
    # Use depth instead of hydraulic radius for calculations. True/False.
    use_depth: False

bounds:
    # Uncomment the following to set them different from the defaults
    # They should be given in LOWER, UPPER
    # Estimated from clast count: 0.365
    # Range for mountain streams with gravel + few boulders: 0.03--0.05
    mannings_n_bounds:
        - 0.025
        - 0.06
    # Floodplain characteristics:
    # * Approximately rectangular
    # * 9 m wide (- channel = 6.5 m)
    # * 0.8 m high above channel (so 1.6 total) -- but assume infinite
    # * Manning's n for heavy timber or med-to-dense brush ~0.1
    # k_fp = (B-b)/n * S^(1/2) = 17.9
    #floodplain_coeff_bounds:
    #    - 0
    #    - 200
    floodplain_exponent_bounds:
        - 1
        - 4
    stage_offset_bounds:
        # On Google Sheet, I have + 7 cm for 2020 onwards.
        # And 10 cm from the start, to which this is now referenced
        - -1
        - 1
    channel_depth_bounds:
        - 4
        - 10
    #channel_width_bounds:
    #    - 60
    #    - 100

plotting:
    # If this is present, the plot will be saved.
    # Format set by file extension.
    # Path may be relative or absolute
    savepath: 'MinnesotaRiver_Jordan.pdf'
    # True/False Boolean flag
    show: True
    # Optional fixed plotting bounds
    stage_min: -0.001
    stage_max: 12
    #discharge_min:
    discharge_max: 3500
    # Plot curve even if discharge is negative (nonphysical)
    display_negative_rating_curve: False
    # Markers and lines for stage offsets and bank heights
    stage_offset_hash_bottom: False
    stage_offset_hash_top: False
    stage_offset_dotted_line: True
    bank_height_hash_bottom: False
    bank_height_hash_top: False
    bank_height_dotted_line: True

output:
    # CSV output file name or full path
    outfile: 'doublemanning_params_MinnesotaJordan.csv'
    # True/False Boolean flag
    verbose: True
```

#### Outputs from the double-Manning inversion

`doublemanning-fit` outputs the following table displaying the parameter estimation.

|Manning's n         |Floodplain discharge coefficient|Floodplain discharge exponent|Stage at Q = 0 [m] |Bank height [m]  |Channel width [m]|Channel slope|SD: Manning's n      |SD: Floodplain discharge coefficient|SD: Floodplain discharge exponent|SD: Stage at Q = 0 [m]|SD: Bank height [m]  |SD: Channel width [m]|SD: Channel slope|Fit RMSE [m^3/s]  |Use flow depth instead of Rh|
|--------------------|--------------------------------|-----------------------------|-------------------|-----------------|-----------------|-------------|---------------------|------------------------------------|---------------------------------|----------------------|---------------------|---------------------|-----------------|------------------|----------------------------|
|0.033831468015063926|138.36638842157538              |1.6166749803210574           |0.47064363991612973|5.797468642861781|100.0            |0.0001       |1.830532636088621e-13|163822.52280191344                  |4.139278869596877e-05            |4.002253904290435e-06 |9.715555430266482e-05|0                    |0                |44.612476854901466|False                       |

In addition, `doublemanning-fit` with the provided `config.yaml` outputs a figure. Here, we have altered `config.yaml` from the version provided here in order to output a `svg` instead of a `pdf`.

![A curved line fitting a set of stage–discharge data points for the Minnesota River near Jordan, MN, USA.](./documentation/figures/MinnesotaRiver_Jordan.svg)

Here, the data points are in black and the double-Manning rating curve is in thick, solid, gray. The thin vertical dotted gray lines represent (left) the stage at which discharge = 0, corresponding to the river bed in the approximately rectangular channel ($z_b$), and (right) the stage at which flow enters the floodplain, $z_s = z_b + z_\beta$.

### Running `doublemanning-calc`: Obtaining stage or water depth from discharge (and vice versa)

With the parameter-estimation CSV file in hand, you may next perform forward calculations to calculate either water depth (or river stage) from discharge, or compute discharge from river depth (or flow stage).

```bash
# First, let's find discharge based on a provided flow stage
# In this case, let's try 7 meters, which corresponds to an overbank flood.
>> doublemanning-calc -p doublemanning_params_MinnesotaJordan.csv -zQ 7
633.0231625564036

# Next, let's pass this discharge to recover our 7-meter stage.
doublemanning-calc -p doublemanning_params_MinnesotaJordan.csv -Qz 633.0231625564036
7.000000000000001

# Yay!
```

## Acknowledgements

* Campbell Dunn created an early version of the command-line interface to `doublemanning-fit`.
* Jabari Jones assembled the USGS data for the Minnesota River gauge near Jordan.

## Funding

Funding for this project comes from:
* The Alexander von Humboldt-Stiftung through a [Humboldt-Forschungsstipendium](https://www.humboldt-foundation.de/en/apply/sponsorship-programmes/humboldt-research-fellowship) provided to A. Wickert.
* The U.S. National Science foundation via Award [1944782: CAREER: Alluvial river dynamics through watershed networks] to A. Wickert.

<img src="./documentation/funding/AvH_Logo_Support_RGB.svg" alt="Unterstützt von der Alexander von Humboldt Stiftung." width="360px">

<img src="./documentation/funding/logo-NSF.svg" alt="Supported by the U.S. National Science Foundation." width="360px">

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/MNiMORPH/rating-curve-2x-manning/",
    "name": "doublemanning",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "fluvial geomorphology sediment transport landscape evolution",
    "author": "Andrew D. Wickert",
    "author_email": "awickert@umn.edu",
    "download_url": "https://files.pythonhosted.org/packages/62/35/62a853c1c92cb3f3240ccbfc846225184e47a75c52967f816867f5a822b3/doublemanning-1.0.0a0.tar.gz",
    "platform": null,
    "description": "[![DOI](https://zenodo.org/badge/388610692.svg)](https://zenodo.org/badge/latestdoi/388610692)\n\n# doublemanning\n\n## Package contents\n\nThis package contains two command-line utilities\n* `doublemanning-fit` inverts stage&mdash;discharge data to generate a rating curve and the associated double-Manning-equation parameters:\n  * A Manning's-equation relationships for an approximately rectangular channel\n  * A generalized Manning's equation (power-law) relationship for flows across the floodplain\n* `doublemanning-calc` uses this fit to perform forward computations:\n  * Stage &rarr; discharge\n  * Flow depth &rarr; discharge\n  * Discharge &rarr; stage\n  * Discharge &rarr; flow depth\n\n## Installation\n\n### From PyPI using Pip\n\nThis command will install the most recent stable release of `doublemanning`.\n\n```bash\npip install doublemanning\n```\n\n### Editable, from a local directory\n\nThese instructions allow you to use the most recent version of `doublemanning` and to make your own edits.\n\nThese instructions assume that you have the GitHub CLI installed. If you do not, just change the repository-cloning line to a standard `git` command.\n\n```bash\ngh repo clone MNiMORPH/doublemanning\ncd doublemanning\npip install -e .\n```\n\n## Running the double-Manning software\n\nYou should be able to run both commands by simply typing their names on the command line.\nHere we provide the outputs form the \"`-h`\" help flag.\nSuch outputs are also provided if you enter the commands with no arguments.\n\n### `doublemanning-fit`\n\n**Note:** Although many command-line options exist to fit the data, I recommend using the `YAML` configuration-file option alone. This will allow you to access the full functionality of `doublemanning-fit` (the command-line options include only a smaller subset) and will self-document your work.\n\n```bash\n>> doublemanning-fit -h\nusage: doublemanning-fit [-h] [-y CONFIGFILE] [-f DATAFILE]\n                         [--delimiter DELIMITER] [-b CHANNEL_WIDTH]\n                         [-H CHANNEL_DEPTH] [-s SLOPE] [-o OUTFILE]\n                         [--use_depth] [--us_units] [--plot] [-v]\n\nPass channel and flow characteristics to obtain a \"Double Manning\" --\nManning\\'s Equation (channel) + generic power-law (floodplain) stage--discharge\n-- relationship.\n\noptions:\n  -h, --help            show this help message and exit\n  -y CONFIGFILE, --configfile CONFIGFILE\n                        YAML file from which all inputs are read.\n  -f DATAFILE, --datafile DATAFILE\n                        file with two columns: Discharge, Stage\n  --delimiter DELIMITER\n                        \"tab\", \"comma\", or \"semicolon\"\n  -b CHANNEL_WIDTH, --channel_width CHANNEL_WIDTH\n                        river-channel width\n  -H CHANNEL_DEPTH, --channel_depth CHANNEL_DEPTH\n                        river-channel depth (not flow depth)\n  -s SLOPE, --slope SLOPE\n                        channel slope\n  -o OUTFILE, --outfile OUTFILE\n                        Stores fit parameters.\n  --use_depth           Use flow depth instead of hydraulic radius.\n  --us_units            Convert imported data from cfs and feet\n  --plot                Plot stage-discharge relationship\n  -v, --verbose         Plot stage-discharge relationship\n```\n\n### `doublemanning-calc`\n\nThe `doublemanning-calc` program returns a scalar value to `stdout`.\n\n```bash\n>> doublemanning-calc -h\nusage: doublemanning-calc [-h] [-p PARAMFILE] [-zQ STAGE_DISCHARGE]\n                          [-hQ DEPTH_DISCHARGE] [-Qz DISCHARGE_STAGE]\n                          [-Qh DISCHARGE_DEPTH]\n\nReturn stage or discharge based on a double-Manning fit. All values are SI\n(mks).\n\noptions:\n  -h, --help            show this help message and exit\n  -p PARAMFILE, --paramfile PARAMFILE\n                        CSV file for double-Manning parameters.\n  -zQ STAGE_DISCHARGE, --stage_discharge STAGE_DISCHARGE\n                        Calculate discharge from this stage.\n  -hQ DEPTH_DISCHARGE, --depth_discharge DEPTH_DISCHARGE\n                        Calculate discharge from this flow depth.\n  -Qz DISCHARGE_STAGE, --discharge_stage DISCHARGE_STAGE\n                        Calculate stage from this discharge.\n  -Qh DISCHARGE_DEPTH, --discharge_depth DISCHARGE_DEPTH\n                        Calculate flow depth from this discharge.\n```\n\n## Physical and mathematical basis\n\n### Core equation\n\nThe double-Manning approach applies the following combination of Manning's equation for in-channel flows (left of the $+$ sign) and a power-law equation for overbank flow (right of the $+$ sign):\n\n$$Q = \\frac{b}{n_\\mathrm{ch}} h R_h^{2/3} S^{1/2} + k_\\mathrm{fp} \\left(h - h_\\beta \\right)^{P_\\mathrm{fp}}$$\n\n### Variables\n\n| **Variable**    | **Description**                                                                                        | **Units [SI]**                                  |\n|-----------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------|\n| $Q$             | Discharge                                                                                              | m$\\mathrm{m}^3 \\text{ s}^{-1}$                  |\n| $b$             | Channel width                                                                                          | m                                               |\n| $B$             | Valley-bottom width                                                                                    | m                                               |\n| $B-b$           | Floodplain width                                                                                       | m                                               |\n| $z_b$           | River-bed elevation (compared to an arbitrary datum)                                                   | m                                               |\n| $z_s$           | River stage: water-surface elevation (compared to the same arbitrary datum)                            | m                                               |\n| $h$             | Flow depth: $h = z_s - z_b$                                                                            | m                                               |\n| $h_b$           | Channel-bank height                                                                                    | m                                               |\n| $R_h$           | Hydraulic radius; for the assumed rectangular channel, $R_h = b \\cdot h / (b + 2 (h \\wedge h_\\beta) )$ | m                                               |\n| $n_\\mathrm{ch}$ | Manning's roughness coefficient within the channel                                                     | m                                               |\n| $S$             | River-channel slope                                                                                    | &mdash;                                         |\n| $k_\\mathrm{fp}$ | Floodplain-flow coefficient                                                                            | $\\mathrm{m}^{3 - P_\\mathrm{fp}} \\text{ s}^{-1}$ |\n| $P_\\mathrm{fp}$ | Floodplain-flow exponent                                                                               | &mdash;                                         |\n\n## Example\n\nBecause playing a game is usually quicker and more fun than reading the rules, we provide data and a YAML configuration file for the [Minnesota River near Jordan, MN, USA](examples/MinnesotaJordan), USGS gauge [05330000](https://waterdata.usgs.gov/monitoring-location/05330000/). `config.yaml` is commented and hopefully self-documented well enough; please open an \"Issue\" if you need some clarification.\n\n### Running `doublemanning-fit`: obtaining the coefficients and plotting the result\n\n`cd` to the `examples/MinnesotaJordan` directory.\n\n```bash\ndoublemanning-fit -y config.yaml\n```\n\n#### `config.yaml`\n\nThis is the same `config.yaml` file [from the example](examples/MinnesotaJordan/config.yaml).\n\n```yaml\nriver: Minnesota\nstation: Jordan\n\nauthor: Andy Wickert\n\ndata:\n    # Filename expected with columns \"Q\", \"Stage\"\n    filename: 'MinnesotaJordan.tsv'\n    # tab, space, or comma\n    delimiter: 'tab'\n    # If data set uses US cfs (Q) and feet (Stage), converts these to metric.\n    us-units: True\n\nchannel:\n    # meters; if ommitted, will be solved for as a free variable\n    width: 100\n    # meters; if omitted, will be solved for as a free variable\n    # depth:\n    # unitless\n    slope: 1E-4\n    # Use depth instead of hydraulic radius for calculations. True/False.\n    use_depth: False\n\nbounds:\n    # Uncomment the following to set them different from the defaults\n    # They should be given in LOWER, UPPER\n    # Estimated from clast count: 0.365\n    # Range for mountain streams with gravel + few boulders: 0.03--0.05\n    mannings_n_bounds:\n        - 0.025\n        - 0.06\n    # Floodplain characteristics:\n    # * Approximately rectangular\n    # * 9 m wide (- channel = 6.5 m)\n    # * 0.8 m high above channel (so 1.6 total) -- but assume infinite\n    # * Manning's n for heavy timber or med-to-dense brush ~0.1\n    # k_fp = (B-b)/n * S^(1/2) = 17.9\n    #floodplain_coeff_bounds:\n    #    - 0\n    #    - 200\n    floodplain_exponent_bounds:\n        - 1\n        - 4\n    stage_offset_bounds:\n        # On Google Sheet, I have + 7 cm for 2020 onwards.\n        # And 10 cm from the start, to which this is now referenced\n        - -1\n        - 1\n    channel_depth_bounds:\n        - 4\n        - 10\n    #channel_width_bounds:\n    #    - 60\n    #    - 100\n\nplotting:\n    # If this is present, the plot will be saved.\n    # Format set by file extension.\n    # Path may be relative or absolute\n    savepath: 'MinnesotaRiver_Jordan.pdf'\n    # True/False Boolean flag\n    show: True\n    # Optional fixed plotting bounds\n    stage_min: -0.001\n    stage_max: 12\n    #discharge_min:\n    discharge_max: 3500\n    # Plot curve even if discharge is negative (nonphysical)\n    display_negative_rating_curve: False\n    # Markers and lines for stage offsets and bank heights\n    stage_offset_hash_bottom: False\n    stage_offset_hash_top: False\n    stage_offset_dotted_line: True\n    bank_height_hash_bottom: False\n    bank_height_hash_top: False\n    bank_height_dotted_line: True\n\noutput:\n    # CSV output file name or full path\n    outfile: 'doublemanning_params_MinnesotaJordan.csv'\n    # True/False Boolean flag\n    verbose: True\n```\n\n#### Outputs from the double-Manning inversion\n\n`doublemanning-fit` outputs the following table displaying the parameter estimation.\n\n|Manning's n         |Floodplain discharge coefficient|Floodplain discharge exponent|Stage at Q = 0 [m] |Bank height [m]  |Channel width [m]|Channel slope|SD: Manning's n      |SD: Floodplain discharge coefficient|SD: Floodplain discharge exponent|SD: Stage at Q = 0 [m]|SD: Bank height [m]  |SD: Channel width [m]|SD: Channel slope|Fit RMSE [m^3/s]  |Use flow depth instead of Rh|\n|--------------------|--------------------------------|-----------------------------|-------------------|-----------------|-----------------|-------------|---------------------|------------------------------------|---------------------------------|----------------------|---------------------|---------------------|-----------------|------------------|----------------------------|\n|0.033831468015063926|138.36638842157538              |1.6166749803210574           |0.47064363991612973|5.797468642861781|100.0            |0.0001       |1.830532636088621e-13|163822.52280191344                  |4.139278869596877e-05            |4.002253904290435e-06 |9.715555430266482e-05|0                    |0                |44.612476854901466|False                       |\n\nIn addition, `doublemanning-fit` with the provided `config.yaml` outputs a figure. Here, we have altered `config.yaml` from the version provided here in order to output a `svg` instead of a `pdf`.\n\n![A curved line fitting a set of stage&ndash;discharge data points for the Minnesota River near Jordan, MN, USA.](./documentation/figures/MinnesotaRiver_Jordan.svg)\n\nHere, the data points are in black and the double-Manning rating curve is in thick, solid, gray. The thin vertical dotted gray lines represent (left) the stage at which discharge = 0, corresponding to the river bed in the approximately rectangular channel ($z_b$), and (right) the stage at which flow enters the floodplain, $z_s = z_b + z_\\beta$.\n\n### Running `doublemanning-calc`: Obtaining stage or water depth from discharge (and vice versa)\n\nWith the parameter-estimation CSV file in hand, you may next perform forward calculations to calculate either water depth (or river stage) from discharge, or compute discharge from river depth (or flow stage).\n\n```bash\n# First, let's find discharge based on a provided flow stage\n# In this case, let's try 7 meters, which corresponds to an overbank flood.\n>> doublemanning-calc -p doublemanning_params_MinnesotaJordan.csv -zQ 7\n633.0231625564036\n\n# Next, let's pass this discharge to recover our 7-meter stage.\ndoublemanning-calc -p doublemanning_params_MinnesotaJordan.csv -Qz 633.0231625564036\n7.000000000000001\n\n# Yay!\n```\n\n## Acknowledgements\n\n* Campbell Dunn created an early version of the command-line interface to `doublemanning-fit`.\n* Jabari Jones assembled the USGS data for the Minnesota River gauge near Jordan.\n\n## Funding\n\nFunding for this project comes from:\n* The Alexander von Humboldt-Stiftung through a [Humboldt-Forschungsstipendium](https://www.humboldt-foundation.de/en/apply/sponsorship-programmes/humboldt-research-fellowship) provided to A. Wickert.\n* The U.S. National Science foundation via Award [1944782: CAREER: Alluvial river dynamics through watershed networks] to A. Wickert.\n\n<img src=\"./documentation/funding/AvH_Logo_Support_RGB.svg\" alt=\"Unterst\u00fctzt von der Alexander von Humboldt Stiftung.\" width=\"360px\">\n\n<img src=\"./documentation/funding/logo-NSF.svg\" alt=\"Supported by the U.S. National Science Foundation.\" width=\"360px\">\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Stage-discharge relationships: double-Manning approach",
    "version": "1.0.0a0",
    "project_urls": {
        "Homepage": "https://github.com/MNiMORPH/rating-curve-2x-manning/",
        "Model page": "https://csdms.colorado.edu/wiki/Model:GRLP"
    },
    "split_keywords": [
        "fluvial",
        "geomorphology",
        "sediment",
        "transport",
        "landscape",
        "evolution"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "989d88787eb1b587b1e04c9c6817db8bb235b46cadfd426a9eef56e8368b5aa3",
                "md5": "9339781d6068f7f66e0fab8c41745ddc",
                "sha256": "c8e60bcaa9cb81a80c0b506bb92c7a8c0f90942a736773ed9aea20f0df5ce859"
            },
            "downloads": -1,
            "filename": "doublemanning-1.0.0a0-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "9339781d6068f7f66e0fab8c41745ddc",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": null,
            "size": 27160,
            "upload_time": "2023-12-09T23:49:57",
            "upload_time_iso_8601": "2023-12-09T23:49:57.608034Z",
            "url": "https://files.pythonhosted.org/packages/98/9d/88787eb1b587b1e04c9c6817db8bb235b46cadfd426a9eef56e8368b5aa3/doublemanning-1.0.0a0-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "623562a853c1c92cb3f3240ccbfc846225184e47a75c52967f816867f5a822b3",
                "md5": "185e63f8dfd3a3048a3e9f2ba1babd47",
                "sha256": "4886a2bb0c04800031686ff7384d3a43817392220ce26930cd82b821aa0c2664"
            },
            "downloads": -1,
            "filename": "doublemanning-1.0.0a0.tar.gz",
            "has_sig": false,
            "md5_digest": "185e63f8dfd3a3048a3e9f2ba1babd47",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 30166,
            "upload_time": "2023-12-09T23:49:59",
            "upload_time_iso_8601": "2023-12-09T23:49:59.438165Z",
            "url": "https://files.pythonhosted.org/packages/62/35/62a853c1c92cb3f3240ccbfc846225184e47a75c52967f816867f5a822b3/doublemanning-1.0.0a0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-09 23:49:59",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "MNiMORPH",
    "github_project": "rating-curve-2x-manning",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "doublemanning"
}
        
Elapsed time: 1.47456s