![banner](/docs/source/_static/banner.svg)
[![PyPI Version](https://img.shields.io/pypi/v/dpeeg)](https://pypi.org/project/dpeeg/)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.13989420.svg)](https://doi.org/10.5281/zenodo.13989420)
[![Documentation Status](https://readthedocs.org/projects/dpeeg/badge/?version=stable)](https://dpeeg.readthedocs.io/stable/?badge=stable)
[![PyPI - License](https://img.shields.io/pypi/l/dpeeg)](https://opensource.org/licenses/MIT)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
**dpeeg** provides a complete workflow for deep learning decoding EEG tasks,
including basic datasets (datasets can be easily customized), basic network
models, model training, rich experiments, and detailed experimental result
storage.
# Installation
1. Create a new virtual environment named "dpeeg" with
[Python](https://www.python.org/) >= 3.10 using Anaconda3 and activate it:
```Shell
conda create --name dpeeg python
conda activate dpeeg
```
2. dpeeg depends on [Pytorch](https://pytorch.org/). Please refer to the
corresponding official website for installation.
3. Complete the installation via `pip`:
```Shell
pip install dpeeg
```
# How to cite
If you would like to cite dpeeg you can do so using our
[Zenodo deposit](https://zenodo.org/records/13989420).
Raw data
{
"_id": null,
"home_page": "https://github.com/SheepTAO/dpeeg",
"name": "dpeeg",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": "eeg, deep learning, pytorch",
"author": "SheepTAO",
"author_email": "sheeptao@outlook.com",
"download_url": "https://files.pythonhosted.org/packages/d9/13/97c4410a66ff09a2ab30fd2b216daa01f018a5a22eadfbac8d769a0bab5c/dpeeg-0.4.2.tar.gz",
"platform": null,
"description": "![banner](/docs/source/_static/banner.svg)\n\n[![PyPI Version](https://img.shields.io/pypi/v/dpeeg)](https://pypi.org/project/dpeeg/)\n[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.13989420.svg)](https://doi.org/10.5281/zenodo.13989420)\n[![Documentation Status](https://readthedocs.org/projects/dpeeg/badge/?version=stable)](https://dpeeg.readthedocs.io/stable/?badge=stable)\n[![PyPI - License](https://img.shields.io/pypi/l/dpeeg)](https://opensource.org/licenses/MIT)\n[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n\n**dpeeg** provides a complete workflow for deep learning decoding EEG tasks, \nincluding basic datasets (datasets can be easily customized), basic network \nmodels, model training, rich experiments, and detailed experimental result \nstorage.\n\n# Installation\n\n1. Create a new virtual environment named \"dpeeg\" with \n[Python](https://www.python.org/) >= 3.10 using Anaconda3 and activate it\uff1a\n```Shell\nconda create --name dpeeg python\nconda activate dpeeg\n```\n\n2. dpeeg depends on [Pytorch](https://pytorch.org/). Please refer to the \ncorresponding official website for installation.\n\n3. Complete the installation via `pip`:\n```Shell\npip install dpeeg\n``` \n\n# How to cite\n\nIf you would like to cite dpeeg you can do so using our \n[Zenodo deposit](https://zenodo.org/records/13989420).\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Deep learning with EEG",
"version": "0.4.2",
"project_urls": {
"Homepage": "https://github.com/SheepTAO/dpeeg"
},
"split_keywords": [
"eeg",
" deep learning",
" pytorch"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "06a635a5544842f512391acfd389b39d7750194f25223b76ec57e081b2f2af33",
"md5": "ff4ef38ba318e3a812c77756ee62cf19",
"sha256": "8fa3af160dbae8422cd6f293758d65db1ddbb8d702ba33c2c01f2eb400f379f3"
},
"downloads": -1,
"filename": "dpeeg-0.4.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "ff4ef38ba318e3a812c77756ee62cf19",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 97681,
"upload_time": "2024-11-07T09:53:53",
"upload_time_iso_8601": "2024-11-07T09:53:53.065832Z",
"url": "https://files.pythonhosted.org/packages/06/a6/35a5544842f512391acfd389b39d7750194f25223b76ec57e081b2f2af33/dpeeg-0.4.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d91397c4410a66ff09a2ab30fd2b216daa01f018a5a22eadfbac8d769a0bab5c",
"md5": "4fb011669f1a187326ce94eccd49e70a",
"sha256": "634adc3e2d8c30a98dd948f61bb3c25ea2b2234b291ae132989d5b6f8b0903b9"
},
"downloads": -1,
"filename": "dpeeg-0.4.2.tar.gz",
"has_sig": false,
"md5_digest": "4fb011669f1a187326ce94eccd49e70a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 75369,
"upload_time": "2024-11-07T09:53:55",
"upload_time_iso_8601": "2024-11-07T09:53:55.441170Z",
"url": "https://files.pythonhosted.org/packages/d9/13/97c4410a66ff09a2ab30fd2b216daa01f018a5a22eadfbac8d769a0bab5c/dpeeg-0.4.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-07 09:53:55",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "SheepTAO",
"github_project": "dpeeg",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "dpeeg"
}