[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/)
[![Pre-commit](https://github.com/IntelPython/dpnp/actions/workflows/pre-commit.yml/badge.svg?branch=master&event=push)](https://github.com/IntelPython/dpnp/actions/workflows/pre-commit.yml)
[![Conda package](https://github.com/IntelPython/dpnp/actions/workflows/conda-package.yml/badge.svg?branch=master&event=push)](https://github.com/IntelPython/dpnp/actions/workflows/conda-package.yml)
[![Coverage Status](https://coveralls.io/repos/github/IntelPython/dpnp/badge.svg?branch=master)](https://coveralls.io/github/IntelPython/dpnp?branch=master)
[![Build Sphinx](https://github.com/IntelPython/dpnp/workflows/Build%20Sphinx/badge.svg)](https://intelpython.github.io/dpnp)
[![OpenSSF Scorecard](https://api.securityscorecards.dev/projects/github.com/IntelPython/dpnp/badge)](https://securityscorecards.dev/viewer/?uri=github.com/IntelPython/dpnp)
# DPNP - Data Parallel Extension for NumPy*
[API coverage summary](https://intelpython.github.io/dpnp/reference/comparison.html#summary)
[Full documentation](https://intelpython.github.io/dpnp/)
[DPNP C++ backend documentation](https://intelpython.github.io/dpnp/backend_doc/)
## Build from source:
Ensure you have the following prerequisite packages installed:
- `cython`
- `cmake >=3.21`
- `dpcpp_linux-64` or `dpcpp_win-64` (depending on your OS)
- `dpctl`
- `mkl-devel-dpcpp`
- `onedpl-devel`
- `ninja`
- `numpy >=1.19,<1.25a0`
- `python`
- `scikit-build`
- `setuptools`
- `sysroot_linux-64 >=2.28` (only on Linux OS)
- `tbb-devel`
After these steps, `dpnp` can be built in debug mode as follows:
```bash
git clone https://github.com/IntelPython/dpnp
cd dpnp
python scripts/build_locally.py
```
## Install Wheel Package via pip
Install DPNP
```cmd
python -m pip install --index-url https://software.repos.intel.com/python/pypi dpnp
```
Set path to Performance Libraries in case of using venv or system Python:
```cmd
export LD_LIBRARY_PATH=<path_to_your_env>/lib
```
It is also required to set following environment variables:
```cmd
export OCL_ICD_FILENAMES_RESET=1
export OCL_ICD_FILENAMES=libintelocl.so
```
## Run test
```bash
pytest
# or
pytest tests/test_matmul.py -s -v
# or
python -m unittest tests/test_mixins.py
```
## Run numpy external test
```bash
. ./0.env.sh
python -m tests.third_party.numpy_ext
# or
python -m tests.third_party.numpy_ext core/tests/test_umath.py
# or
python -m tests.third_party.numpy_ext core/tests/test_umath.py::TestHypot::test_simple
```
### Building documentation:
```bash
Prerequisites:
$ conda install sphinx sphinx_rtd_theme
Building:
1. Install dpnp into your python environment
2. $ cd doc && make html
3. The documentation will be in doc/_build/html
```
## Packaging:
```bash
. ./0.env.sh
conda-build conda-recipe/
```
## Run benchmark:
```bash
cd benchmarks/
asv run --python=python --bench <filename without .py>
# example:
asv run --python=python --bench bench_elementwise
# or
asv run --python=python --bench <class>.<bench>
# example:
asv run --python=python --bench Elementwise.time_square
# add --quick option to run every case once but looks like first execution has additional overheads and takes a lot of time (need to be investigated)
```
## Tests matrix:
| # |Name |OS |distributive|interpreter|python used from|SYCL queue manager|build commands set |forced environment |
|---|------------------------------------|-----|------------|-----------|:--------------:|:----------------:|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|1 |Ubuntu 20.04 Python37 |Linux|Ubuntu 20.04|Python 3.7 | IntelOneAPI | local |export DPNP_DEBUG=1 python setup.py clean python setup.py build_clib python setup.py build_ext --inplace pytest |cmake-3.19.2, valgrind, pytest-valgrind, conda-build, pytest, hypothesis |
|2 |Ubuntu 20.04 Python38 |Linux|Ubuntu 20.04|Python 3.8 | IntelOneAPI | local |export DPNP_DEBUG=1 python setup.py clean python setup.py build_clib python setup.py build_ext --inplace pytest |cmake-3.19.2, valgrind, pytest-valgrind, conda-build, pytest, hypothesis |
|3 |Ubuntu 20.04 Python39 |Linux|Ubuntu 20.04|Python 3.9 | IntelOneAPI | local |export DPNP_DEBUG=1 python setup.py clean python setup.py build_clib python setup.py build_ext --inplace pytest |cmake-3.19.2, valgrind, pytest-valgrind, conda-build, pytest, hypothesis |
|4 |Ubuntu 20.04 External Tests Python37|Linux|Ubuntu 20.04|Python 3.7 | IntelOneAPI | local |export DPNP_DEBUG=1 python setup.py clean python setup.py build_clib python setup.py build_ext --inplace python -m tests_external.numpy.runtests|cmake-3.19.2, valgrind, pytest-valgrind, conda-build, pytest, hypothesis |
|5 |Ubuntu 20.04 External Tests Python38|Linux|Ubuntu 20.04|Python 3.8 | IntelOneAPI | local |export DPNP_DEBUG=1 python setup.py clean python setup.py build_clib python setup.py build_ext --inplace python -m tests_external.numpy.runtests|cmake-3.19.2, valgrind, pytest-valgrind, conda-build, pytest, hypothesis |
|6 |Ubuntu 20.04 External Tests Python39|Linux|Ubuntu 20.04|Python 3.9 | IntelOneAPI | local |export DPNP_DEBUG=1 python setup.py clean python setup.py build_clib python setup.py build_ext --inplace python -m tests_external.numpy.runtests|cmake-3.19.2, valgrind, pytest-valgrind, conda-build, pytest, hypothesis |
|7 |Code style |Linux|Ubuntu 20.04|Python 3.8 | IntelOneAPI | local |python ./setup.py style |cmake-3.19.2, valgrind, pytest-valgrind, conda-build, pytest, hypothesis, conda-verify, pycodestyle, autopep8, black |
|8 |Valgrind |Linux|Ubuntu 20.04| | IntelOneAPI | local |export DPNP_DEBUG=1 python setup.py clean python setup.py build_clib python setup.py build_ext --inplace |cmake-3.19.2, valgrind, pytest-valgrind, conda-build, pytest, hypothesis |
|9 |Code coverage |Linux|Ubuntu 20.04|Python 3.8 | IntelOneAPI | local |export DPNP_DEBUG=1 python setup.py clean python setup.py build_clib python setup.py build_ext --inplace |cmake-3.19.2, valgrind, pytest-valgrind, conda-build, pytest, hypothesis, conda-verify, pycodestyle, autopep8, pytest-cov|
Raw data
{
"_id": null,
"home_page": "https://github.com/IntelPython/dpnp",
"name": "dpnp",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "sycl numpy python3 intel mkl oneapi gpu dpcpp",
"author": "Intel Corporation",
"author_email": null,
"download_url": null,
"platform": "Linux",
"description": "[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\r\n[![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/)\r\n[![Pre-commit](https://github.com/IntelPython/dpnp/actions/workflows/pre-commit.yml/badge.svg?branch=master&event=push)](https://github.com/IntelPython/dpnp/actions/workflows/pre-commit.yml)\r\n[![Conda package](https://github.com/IntelPython/dpnp/actions/workflows/conda-package.yml/badge.svg?branch=master&event=push)](https://github.com/IntelPython/dpnp/actions/workflows/conda-package.yml)\r\n[![Coverage Status](https://coveralls.io/repos/github/IntelPython/dpnp/badge.svg?branch=master)](https://coveralls.io/github/IntelPython/dpnp?branch=master)\r\n[![Build Sphinx](https://github.com/IntelPython/dpnp/workflows/Build%20Sphinx/badge.svg)](https://intelpython.github.io/dpnp)\r\n[![OpenSSF Scorecard](https://api.securityscorecards.dev/projects/github.com/IntelPython/dpnp/badge)](https://securityscorecards.dev/viewer/?uri=github.com/IntelPython/dpnp)\r\n\r\n# DPNP - Data Parallel Extension for NumPy*\r\n[API coverage summary](https://intelpython.github.io/dpnp/reference/comparison.html#summary)\r\n\r\n[Full documentation](https://intelpython.github.io/dpnp/)\r\n\r\n[DPNP C++ backend documentation](https://intelpython.github.io/dpnp/backend_doc/)\r\n\r\n## Build from source:\r\nEnsure you have the following prerequisite packages installed:\r\n\r\n- `cython`\r\n- `cmake >=3.21`\r\n- `dpcpp_linux-64` or `dpcpp_win-64` (depending on your OS)\r\n- `dpctl`\r\n- `mkl-devel-dpcpp`\r\n- `onedpl-devel`\r\n- `ninja`\r\n- `numpy >=1.19,<1.25a0`\r\n- `python`\r\n- `scikit-build`\r\n- `setuptools`\r\n- `sysroot_linux-64 >=2.28` (only on Linux OS)\r\n- `tbb-devel`\r\n\r\nAfter these steps, `dpnp` can be built in debug mode as follows:\r\n\r\n```bash\r\ngit clone https://github.com/IntelPython/dpnp\r\ncd dpnp\r\npython scripts/build_locally.py\r\n```\r\n\r\n## Install Wheel Package via pip\r\nInstall DPNP\r\n```cmd\r\npython -m pip install --index-url https://software.repos.intel.com/python/pypi dpnp\r\n```\r\n\r\nSet path to Performance Libraries in case of using venv or system Python:\r\n```cmd\r\nexport LD_LIBRARY_PATH=<path_to_your_env>/lib\r\n```\r\n\r\nIt is also required to set following environment variables:\r\n```cmd\r\nexport OCL_ICD_FILENAMES_RESET=1\r\nexport OCL_ICD_FILENAMES=libintelocl.so\r\n```\r\n\r\n## Run test\r\n```bash\r\npytest\r\n# or\r\npytest tests/test_matmul.py -s -v\r\n# or\r\npython -m unittest tests/test_mixins.py\r\n```\r\n\r\n## Run numpy external test\r\n```bash\r\n. ./0.env.sh\r\npython -m tests.third_party.numpy_ext\r\n# or\r\npython -m tests.third_party.numpy_ext core/tests/test_umath.py\r\n# or\r\npython -m tests.third_party.numpy_ext core/tests/test_umath.py::TestHypot::test_simple\r\n```\r\n\r\n### Building documentation:\r\n```bash\r\nPrerequisites:\r\n$ conda install sphinx sphinx_rtd_theme\r\nBuilding:\r\n1. Install dpnp into your python environment\r\n2. $ cd doc && make html\r\n3. The documentation will be in doc/_build/html\r\n```\r\n\r\n## Packaging:\r\n```bash\r\n. ./0.env.sh\r\nconda-build conda-recipe/\r\n```\r\n\r\n## Run benchmark:\r\n```bash\r\ncd benchmarks/\r\n\r\nasv run --python=python --bench <filename without .py>\r\n# example:\r\nasv run --python=python --bench bench_elementwise\r\n\r\n# or\r\n\r\nasv run --python=python --bench <class>.<bench>\r\n# example:\r\nasv run --python=python --bench Elementwise.time_square\r\n\r\n# add --quick option to run every case once but looks like first execution has additional overheads and takes a lot of time (need to be investigated)\r\n```\r\n\r\n\r\n## Tests matrix:\r\n| # |Name |OS |distributive|interpreter|python used from|SYCL queue manager|build commands set |forced environment |\r\n|---|------------------------------------|-----|------------|-----------|:--------------:|:----------------:|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|\r\n|1 |Ubuntu 20.04 Python37 |Linux|Ubuntu 20.04|Python 3.7 | IntelOneAPI | local |export DPNP_DEBUG=1 python setup.py clean python setup.py build_clib python setup.py build_ext --inplace pytest |cmake-3.19.2, valgrind, pytest-valgrind, conda-build, pytest, hypothesis |\r\n|2 |Ubuntu 20.04 Python38 |Linux|Ubuntu 20.04|Python 3.8 | IntelOneAPI | local |export DPNP_DEBUG=1 python setup.py clean python setup.py build_clib python setup.py build_ext --inplace pytest |cmake-3.19.2, valgrind, pytest-valgrind, conda-build, pytest, hypothesis |\r\n|3 |Ubuntu 20.04 Python39 |Linux|Ubuntu 20.04|Python 3.9 | IntelOneAPI | local |export DPNP_DEBUG=1 python setup.py clean python setup.py build_clib python setup.py build_ext --inplace pytest |cmake-3.19.2, valgrind, pytest-valgrind, conda-build, pytest, hypothesis |\r\n|4 |Ubuntu 20.04 External Tests Python37|Linux|Ubuntu 20.04|Python 3.7 | IntelOneAPI | local |export DPNP_DEBUG=1 python setup.py clean python setup.py build_clib python setup.py build_ext --inplace python -m tests_external.numpy.runtests|cmake-3.19.2, valgrind, pytest-valgrind, conda-build, pytest, hypothesis |\r\n|5 |Ubuntu 20.04 External Tests Python38|Linux|Ubuntu 20.04|Python 3.8 | IntelOneAPI | local |export DPNP_DEBUG=1 python setup.py clean python setup.py build_clib python setup.py build_ext --inplace python -m tests_external.numpy.runtests|cmake-3.19.2, valgrind, pytest-valgrind, conda-build, pytest, hypothesis |\r\n|6 |Ubuntu 20.04 External Tests Python39|Linux|Ubuntu 20.04|Python 3.9 | IntelOneAPI | local |export DPNP_DEBUG=1 python setup.py clean python setup.py build_clib python setup.py build_ext --inplace python -m tests_external.numpy.runtests|cmake-3.19.2, valgrind, pytest-valgrind, conda-build, pytest, hypothesis |\r\n|7 |Code style |Linux|Ubuntu 20.04|Python 3.8 | IntelOneAPI | local |python ./setup.py style |cmake-3.19.2, valgrind, pytest-valgrind, conda-build, pytest, hypothesis, conda-verify, pycodestyle, autopep8, black |\r\n|8 |Valgrind |Linux|Ubuntu 20.04| | IntelOneAPI | local |export DPNP_DEBUG=1 python setup.py clean python setup.py build_clib python setup.py build_ext --inplace |cmake-3.19.2, valgrind, pytest-valgrind, conda-build, pytest, hypothesis |\r\n|9 |Code coverage |Linux|Ubuntu 20.04|Python 3.8 | IntelOneAPI | local |export DPNP_DEBUG=1 python setup.py clean python setup.py build_clib python setup.py build_ext --inplace |cmake-3.19.2, valgrind, pytest-valgrind, conda-build, pytest, hypothesis, conda-verify, pycodestyle, autopep8, pytest-cov|\r\n",
"bugtrack_url": null,
"license": "Apache 2.0",
"summary": "Data Parallel Extension for NumPy",
"version": "0.16.0",
"project_urls": {
"Homepage": "https://github.com/IntelPython/dpnp"
},
"split_keywords": [
"sycl",
"numpy",
"python3",
"intel",
"mkl",
"oneapi",
"gpu",
"dpcpp"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "705dfcb94518fbbe45b08bfa2f901d1d227132076b6044bc5e3dfcc2254c6811",
"md5": "ddce3e2ece8c6bdbe21d28e1cd5f5df4",
"sha256": "2ca70f51a35385c645843ad6b460afc7eff144c6412f6fc2433b89d06eb091f0"
},
"downloads": -1,
"filename": "dpnp-0.16.0-0-cp310-cp310-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "ddce3e2ece8c6bdbe21d28e1cd5f5df4",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 5872060,
"upload_time": "2024-10-29T16:53:01",
"upload_time_iso_8601": "2024-10-29T16:53:01.707677Z",
"url": "https://files.pythonhosted.org/packages/70/5d/fcb94518fbbe45b08bfa2f901d1d227132076b6044bc5e3dfcc2254c6811/dpnp-0.16.0-0-cp310-cp310-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "cd75676b0581dc499e38a76657710ee1e8922bb7173ec2db614e9d57e4d5ea84",
"md5": "956fc0b92b07ec3cdcf3db13458f933d",
"sha256": "94b1bb87aa378b2e3dd7d0363b106a82a4cfa360b3780339c9d61a9974f72138"
},
"downloads": -1,
"filename": "dpnp-0.16.0-0-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "956fc0b92b07ec3cdcf3db13458f933d",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 4479632,
"upload_time": "2024-10-29T16:51:37",
"upload_time_iso_8601": "2024-10-29T16:51:37.694916Z",
"url": "https://files.pythonhosted.org/packages/cd/75/676b0581dc499e38a76657710ee1e8922bb7173ec2db614e9d57e4d5ea84/dpnp-0.16.0-0-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "6888ed89f45d2dd8509ec72627ec7d41251053a269579f0425f0b36c9c4dc68f",
"md5": "dee9d4932b2d8f27e2f1c513ae91df92",
"sha256": "032b30e6ba0f2305d27fcf45b9d091ad8491f57cdcd10e3bdb561c2547b2dd2c"
},
"downloads": -1,
"filename": "dpnp-0.16.0-0-cp311-cp311-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "dee9d4932b2d8f27e2f1c513ae91df92",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 5884778,
"upload_time": "2024-10-29T16:52:44",
"upload_time_iso_8601": "2024-10-29T16:52:44.058501Z",
"url": "https://files.pythonhosted.org/packages/68/88/ed89f45d2dd8509ec72627ec7d41251053a269579f0425f0b36c9c4dc68f/dpnp-0.16.0-0-cp311-cp311-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3b0f23f72d0c15f5b1106659a3d2f2d85c264a3fda7d90478c3ba495361fe0f9",
"md5": "9f896efdf0dd3b39948126662a37c8bc",
"sha256": "a2edca1b452983985b03dc5e42384195ffda4656e6156e08ca343ae168f5444c"
},
"downloads": -1,
"filename": "dpnp-0.16.0-0-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "9f896efdf0dd3b39948126662a37c8bc",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 4487538,
"upload_time": "2024-10-29T16:51:22",
"upload_time_iso_8601": "2024-10-29T16:51:22.221198Z",
"url": "https://files.pythonhosted.org/packages/3b/0f/23f72d0c15f5b1106659a3d2f2d85c264a3fda7d90478c3ba495361fe0f9/dpnp-0.16.0-0-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "7a3b9fef31960e5c1a0b4aa0044cb013c2cedb5860faff18c39933f9348e7599",
"md5": "def5c117967c23f9b33d52b557990d38",
"sha256": "059ba167353f5bedd0ebf2dc1bc14245f9b264b1b39c1b94fc0dd139af4af873"
},
"downloads": -1,
"filename": "dpnp-0.16.0-0-cp312-cp312-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "def5c117967c23f9b33d52b557990d38",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 5889512,
"upload_time": "2024-10-29T16:52:14",
"upload_time_iso_8601": "2024-10-29T16:52:14.560434Z",
"url": "https://files.pythonhosted.org/packages/7a/3b/9fef31960e5c1a0b4aa0044cb013c2cedb5860faff18c39933f9348e7599/dpnp-0.16.0-0-cp312-cp312-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "51b59519a3b5f0d62db2c80d5823e261b366a11b3806d2509bcce2aa1a254c4c",
"md5": "5803a58c01c7a1e60009a2a905f462b6",
"sha256": "130c826a6be0c903096a2e9c848c99efed5d0fc84eff7b41ff74f899ddad9493"
},
"downloads": -1,
"filename": "dpnp-0.16.0-0-cp312-cp312-win_amd64.whl",
"has_sig": false,
"md5_digest": "5803a58c01c7a1e60009a2a905f462b6",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 4498038,
"upload_time": "2024-10-29T16:51:03",
"upload_time_iso_8601": "2024-10-29T16:51:03.439064Z",
"url": "https://files.pythonhosted.org/packages/51/b5/9519a3b5f0d62db2c80d5823e261b366a11b3806d2509bcce2aa1a254c4c/dpnp-0.16.0-0-cp312-cp312-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "9f45ff8613f589f7e1ad931c91aa7bda89bf6a0c8b95888a3700b302bc3ae627",
"md5": "5f7108dd30c9942d89f8362dbfdeb94c",
"sha256": "d4bd9cfa7866b72997d7840e39e70a3efacab78ecf7a68ed63ca23c29cf5e440"
},
"downloads": -1,
"filename": "dpnp-0.16.0-0-cp39-cp39-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "5f7108dd30c9942d89f8362dbfdeb94c",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 5874506,
"upload_time": "2024-10-29T16:51:56",
"upload_time_iso_8601": "2024-10-29T16:51:56.630882Z",
"url": "https://files.pythonhosted.org/packages/9f/45/ff8613f589f7e1ad931c91aa7bda89bf6a0c8b95888a3700b302bc3ae627/dpnp-0.16.0-0-cp39-cp39-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "6a1faa88189a7df0a4b4882e0301509b6bc7bd6a8b0f53df6c055ecd5784399c",
"md5": "54ce51fa209ab4533455d65b0fe792a2",
"sha256": "b5ec51219b7d918f7d579ac1f1bafceb428e5f389bc49141d3a4a811b9468ccc"
},
"downloads": -1,
"filename": "dpnp-0.16.0-0-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "54ce51fa209ab4533455d65b0fe792a2",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 4482490,
"upload_time": "2024-10-29T16:50:33",
"upload_time_iso_8601": "2024-10-29T16:50:33.853685Z",
"url": "https://files.pythonhosted.org/packages/6a/1f/aa88189a7df0a4b4882e0301509b6bc7bd6a8b0f53df6c055ecd5784399c/dpnp-0.16.0-0-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-29 16:53:01",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "IntelPython",
"github_project": "dpnp",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "dpnp"
}